Relativistic hamiltonian dynamics of singularities of the Liouville equation
Annales de l'I.H.P. Physique théorique, Volume 38 (1983) no. 1, p. 81-92
@article{AIHPA_1983__38_1_81_0,
     author = {Pogrebkov, A. K. and Todorov, I. T.},
     title = {Relativistic hamiltonian dynamics of singularities of the Liouville equation},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     publisher = {Gauthier-Villars},
     volume = {38},
     number = {1},
     year = {1983},
     pages = {81-92},
     zbl = {0539.35068},
     mrnumber = {700703},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1983__38_1_81_0}
}
Pogrebkov, A. K.; Todorov, I. T. Relativistic hamiltonian dynamics of singularities of the Liouville equation. Annales de l'I.H.P. Physique théorique, Volume 38 (1983) no. 1, pp. 81-92. http://www.numdam.org/item/AIHPA_1983__38_1_81_0/

[1] G.P. Jorjadze, A.K. Pogrebkov, M.C. Polivanov, On the solutions with singularities of the Liouville equation φ ± m 2 2 exp φ = 0 , ICTP preprint IC/78/126. Trieste, 1978. 2

G.P. Georjadze, A.K. Pogrebkov, M.K. Polivanov, Singular solutions of the equation φ ± m 2 2 exp φ = 0 , Theor. Math. Phys., t. 40, 1979, p. 706-715. | Zbl 0453.35058

[2] A.K. Pogrebkov, Complete integrability of dynamical systems, generated by the singular solutions of the Liouville equation, Theor. Math. Phys., t. 45, 1980. p. 951-957. | MR 604518 | Zbl 0461.35083

[3] D.G. Currie, T.F. Jordan, E.C.G. Sudarshan, Relativistic invariance and Hamiltonian theories of interacting particles, Rev. Mod. Phys., t. 35, 1963, p. 350-375; ibid 1032. | MR 151138

[4] H. Leutwyler, A no-interaction theorem in classical relativistic Hamiltonian particle mechanics, Nuovo Cim., 37, 1965, p. 556-557.

[5] R.N. Hill, Canonical formulation of relativistic mechanics, J. Math. Phys., t. 8, 1967, p. 1756-1773.

[6] R. Giachetti, E. Sorace, Nonexistence of two body interacting Lagrangians invariant under independent reparametrizations of each world-line, Lett. Nuovo Cim., t. 26, 1979, p. 1-4.

[7] V.V. Molotkov, I.T. Todorov, Frame dependence of world lines for directly interacting classical relativistic particles, Int. Rep. IC/79/59 Trieste, 1979.

[8] V.V. Molotkov, T.T. Todorov, Gauge dependence of world lines and invariance of the S-matrix in relativistic classical mechanics, Comm. Math. Phys., t. 79, 1981, p. 111-132. | MR 609231

[9] I.T. Todorov, Dynamics of relativistic point particles as a problem with constraints, Commun. JINR E2-10125 Dubna, 1976; Constraint Hamiltonian mechanics of directly interacting relativistic paricles, preprint BI-TP 81/24, Bielefeld, 1981 ; Differential geometric methods in relativistic particle dynamics. Single particle systems, Lecture notes, USP Mathematizierung, Bielefeld, 1981 (This latter reference contains an extended bibliography). | MR 705659

[10] L.D. Faddeev, Feynman integrals for singular Lagrangians, Theor. Math. Phys., t. 1, 1969, p. 1-13. | MR 465005 | Zbl 1183.81090

[11] E.H. Kerner, Can the position variable be a canonical coordinate in a many particle relativistic theory? J. Math. Phys., t. 6, 1965, p. 1218-1227. | MR 187870

[12] Ph. Droz-Vincent, Relativistic systems of interacting particles, Physica Scripta, t. 2, 1970, p. 129-134; N-body relativistic systems, Ann. Inst. H. Poincaré, t. 32A, 1980, p. 377-389. | Numdam | MR 309506 | Zbl 1063.83553

[13] L. Bel, J. Martin, Formes Hamiltoniennes et systèmes conservatifs, Ann. Inst. H. Poincaré, t. 22A, 1975, p. 173-195. | Numdam | MR 378697

[14] H. Sazdjian, Position variables in classical relativistic Hamiltonian mechanics, Nucl. Phys., t. B161, 1979, p. 469-492. | MR 551949

[15] P.A. Nikolov, I.T. Todorov, Space-time versus phase space approach to relativistic particle dynamics, Lecture Notes in Mathematics (to be published). | MR 699809 | Zbl 0525.70018