@article{AIHPA_1984__41_2_171_0, author = {Cardin, Franco}, title = {Existence and uniqueness theorems for viscous fluids capable of heat conduction in a relativistic theory of non stationary thermodynamics}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {171--189}, publisher = {Gauthier-Villars}, volume = {41}, number = {2}, year = {1984}, mrnumber = {769154}, zbl = {0568.76125}, language = {en}, url = {http://archive.numdam.org/item/AIHPA_1984__41_2_171_0/} }
TY - JOUR AU - Cardin, Franco TI - Existence and uniqueness theorems for viscous fluids capable of heat conduction in a relativistic theory of non stationary thermodynamics JO - Annales de l'I.H.P. Physique théorique PY - 1984 SP - 171 EP - 189 VL - 41 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPA_1984__41_2_171_0/ LA - en ID - AIHPA_1984__41_2_171_0 ER -
%0 Journal Article %A Cardin, Franco %T Existence and uniqueness theorems for viscous fluids capable of heat conduction in a relativistic theory of non stationary thermodynamics %J Annales de l'I.H.P. Physique théorique %D 1984 %P 171-189 %V 41 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPA_1984__41_2_171_0/ %G en %F AIHPA_1984__41_2_171_0
Cardin, Franco. Existence and uniqueness theorems for viscous fluids capable of heat conduction in a relativistic theory of non stationary thermodynamics. Annales de l'I.H.P. Physique théorique, Volume 41 (1984) no. 2, pp. 171-189. http://archive.numdam.org/item/AIHPA_1984__41_2_171_0/
[1] Relativistic Thermodynamics of Simple Heat Conducting Fluids. Arch. Rat. Mech. Anal., t. 48, 1972, p. 245. | MR | Zbl
and ,[2] Perspectives in nonlinearity. W. A. Benjamin, Inc. New York, 1968. | Zbl
and ,[3] Sur l'existence et la recherche d'équations de conservation supplémentaires pour les systèmes hyperboliques. C. R. Acad. Sci., Paris, t. 278 A, 1974, p. 909. | MR | Zbl
,[4] Limite de la vitesse de chocs dans les champs à densité d'énergie convex. C. R. Acad. Sci. Paris, t. 289 A, 1979, p. 257. | MR | Zbl
and ,[5] Symmetric form of nonlinear mechanics equations and entropy growth across a shock. Acta Mechanica, t. 35, 1980, p. 271. | Zbl
and ,[6] Relativistic Theories of Materials, Springer-Verlag, Berlin, Heidelberg, New York, 1978. | MR | Zbl
,[7] On Relativistic Heat Conduction in the Stationary and Nonstationary Cases, the Objectivity Principle and Piezo-elasticity. Lett. Al Nuovo Cimento, t. 33, n° 4, 1982, p. 108. Addendum On Relativistic Heat Conduction... Lett. Al Nuovo Cimento, t. 34, p. 63.
,[8] On the Relativistic Nonstationary Law of Heat Conduction and the Objectivity Principle, Piezoelasticity. Being printed on B.U.M.I. (Bollettino dell' Unione Matematica Italiana). | Zbl
,[9] The Thermodynamics of Elastic Materials with Heat Conduction and Viscosity. Arch. Rat. Mech. Anal., t. 13, 1963, p. 167. | MR | Zbl
and ,[10] The Einstein Evolution Equations as a First-Order Quasi-Linear Symmetric Hyperbolic System, I. Commun. math. Phys., t. 28, 1972, p. 1. | MR | Zbl
and ,[11] General Relativity, Partial Differential Equations and Dynamical System, Proc. Symp. Pure Math., t. 23, Ed. by C. Spencer, 1973. | MR | Zbl
and ,[12] Conservation Equations and the Laws of Motion in Classical Physics. Comm. Pure Appl. Math., t. 31, 1978, p. 123. | MR | Zbl
,[13] Systems of Conservation Equations with a Convex Extension. Proc. Nat. Acad. Sci. U. S. A., t. 68, 1971, p. 1686. | MR | Zbl
and ,[14] An interesting class of quasilinear systems. Sov. Math., t. 2, 1961, p. 947. | Zbl
,[15] A dynamical approach to relativistic continuum mechanics. Ann. Inst. Henri Poincaré, Sect. A, t. 29, 1978, p. 423. | Numdam | MR | Zbl
and ,[16] Towards Relativistic Thermodynamics. Arch. Rat. Mech. Anal., t. 34, 1969, p. 259. | Zbl
,[17] Main field and convex covariant density for quasi-linear hyperbolic systems. Relativistic Fluid Dynamics. Ann. Inst. Henri Poincaré, Sect. A, t. 34, 1981, p. 65. | Numdam | MR | Zbl
and ,[18] Mathematical Principles of Classical Fluid Mechanics. Handbuch der Physik, Band VIII, Berlin-Göttingen-Heidelberg ; Springer 1959. | MR
,[19] The Classical Field Theories. Handbuch der Physik, Band 111/1, Berlin-Göttingen-Heidelberg; Springer 1960. | MR
and ,