@article{AIHPA_1985__43_4_369_0, author = {Balslev, Erik and Skibsted, Erik}, title = {Boundedness of two- and three-body resonances}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {369--397}, publisher = {Gauthier-Villars}, volume = {43}, number = {4}, year = {1985}, mrnumber = {824082}, zbl = {0597.35027}, language = {en}, url = {http://archive.numdam.org/item/AIHPA_1985__43_4_369_0/} }
TY - JOUR AU - Balslev, Erik AU - Skibsted, Erik TI - Boundedness of two- and three-body resonances JO - Annales de l'I.H.P. Physique théorique PY - 1985 SP - 369 EP - 397 VL - 43 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPA_1985__43_4_369_0/ LA - en ID - AIHPA_1985__43_4_369_0 ER -
Balslev, Erik; Skibsted, Erik. Boundedness of two- and three-body resonances. Annales de l'I.H.P. Physique théorique, Tome 43 (1985) no. 4, pp. 369-397. http://archive.numdam.org/item/AIHPA_1985__43_4_369_0/
[1] Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa, Class. Sci., Ser. IV, II, 1975, p. 151-218. | Numdam | MR | Zbl
,[2] Analytic scattering theory of two-body Schrödinger operators, J. Funct. Analysis, t. 29, n° 3, 1978, p. 375-396. | MR | Zbl
,[3] Decomposition of many-body Schrödinger operators, Comm. Math. Phys. t. 52, 1977, p. 127-146. | MR | Zbl
,[4] Analytic scattering theory of quantum-mechanical three-body systems, Ann. Inst. Henri Poincaré, Vol. XXXII, n° 2, 1980, p. 125-160. | Numdam | MR | Zbl
,[5] Resonances in three-body scattering theory, Adv. Appl. Math., t. 5, 1984, p. 260-285. | MR | Zbl
,[6] Spectral properties of many-body Schrödinger operators with dilation-analytic interactions, Comm. Math. Phys., t. 22, 1971, p. 280-299. | MR | Zbl
and ,[7] Hilbert space approach to the quantum mechanical three-body problem, Ann. Inst. H. Poincaré, Vol. XXI, n° 2, 1974, p. 97-145. | Numdam | MR | Zbl
and ,[8] Asymptotic completeness for multiparticle Schrödinger Hamiltonians with weak potentials, Comm. Math. Phys., t. 27, 1972, p. 137-145. | MR
and ,[9] Local decay in time of solutions to Schrödinger's equation with dilation-analytic interaction, Manuscripta Math., 1978, t. 25, p. 61-77. | MR | Zbl
,[10] Scattering theory of waves and particles, 2nd edition, Springer-Verlag, 1982. | MR | Zbl
,[11] Methods of modern mathematical physics, III and IV. New York, Academic Press, 1979 and 1978. | MR
and ,[12] Quantum Mechanics for Hamiltonians Defined as Quadratic Forms, Princeton University Press, 1971. | MR | Zbl
,[13] Quadratic form techniques and the Balslev-Combes theorem, Comm. Math. Phys., t. 27, 1972, p. 1-12. | MR | Zbl
,[14] Resonances of Schrödinger operators with potentials. V(r) = γrβe-ζrα, β > - 2, ζ > 0 and α > 1, to appear in J. Math. Anal. Appl. | MR | Zbl
,