A characterisation of dilation-analytic operators
Annales de l'I.H.P. Physique théorique, Volume 45 (1986) no. 3, p. 277-292
@article{AIHPA_1986__45_3_277_0,
     author = {Balslev, Erik and Grossmann, A. and Paul, T.},
     title = {A characterisation of dilation-analytic operators},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     publisher = {Gauthier-Villars},
     volume = {45},
     number = {3},
     year = {1986},
     pages = {277-292},
     zbl = {0624.47022},
     mrnumber = {868527},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1986__45_3_277_0}
}
Balslev, E.; Grossmann, A.; Paul, T. A characterisation of dilation-analytic operators. Annales de l'I.H.P. Physique théorique, Volume 45 (1986) no. 3, pp. 277-292. http://www.numdam.org/item/AIHPA_1986__45_3_277_0/

[1] J. Aguilar and J.M. Combes, A class of analytic perturbations for one-body Schrödinger Hamiltonians, Comm. Math. Phys., t. 22, 1971, p. 269-279. | MR 345551 | Zbl 0219.47011

[2] E. Balslev and J.M. Combes, Spectral properties of many-body Schrödinger operators with dilation-analytic interactions, Comm. Math. Phys., t. 22, 1971, p. 280-299. | MR 345552 | Zbl 0219.47005

[3] D. Babbitt and E. Balslev, A characterisation of dilation-analytic potentials and vectors, J. Funct. Analysis, t. 18, 1975, p. 1-14. | MR 384008 | Zbl 0304.47009

[4] A. Dionisi Vici, A characterisation of dilation analytic integral kernels, Lett. Math. Phys., t. 3, 1979, p. 533-541. | MR 555337 | Zbl 0434.47039

[5] T. Paul, Functions analytic on the half-plane as quantum mechanical states, J. Math. Phys., t. 25, 1984, p. 3252-3263. | MR 761848

[6] T. Paul, Affine coherent states for the radial Schrödinger equation 1. Radial harmonic oscillator and hydrogen atom. Preprint CPT 84/P. 1710, Marseille. Submitted to Ann. I. H. P.

[7] J. Weidmann, Linear Operators in Hilbert Spaces, Springer Verlag, 1980. | MR 566954 | Zbl 0434.47001