@article{AIHPA_1986__45_3_293_0, author = {Grossmann, A. and Morlet, J. and Paul, T.}, title = {Transforms associated to square integrable group representations. {II} : examples}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {293--309}, publisher = {Gauthier-Villars}, volume = {45}, number = {3}, year = {1986}, mrnumber = {868528}, zbl = {0601.22001}, language = {en}, url = {http://archive.numdam.org/item/AIHPA_1986__45_3_293_0/} }
TY - JOUR AU - Grossmann, A. AU - Morlet, J. AU - Paul, T. TI - Transforms associated to square integrable group representations. II : examples JO - Annales de l'I.H.P. Physique théorique PY - 1986 SP - 293 EP - 309 VL - 45 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPA_1986__45_3_293_0/ LA - en ID - AIHPA_1986__45_3_293_0 ER -
%0 Journal Article %A Grossmann, A. %A Morlet, J. %A Paul, T. %T Transforms associated to square integrable group representations. II : examples %J Annales de l'I.H.P. Physique théorique %D 1986 %P 293-309 %V 45 %N 3 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPA_1986__45_3_293_0/ %G en %F AIHPA_1986__45_3_293_0
Grossmann, A.; Morlet, J.; Paul, T. Transforms associated to square integrable group representations. II : examples. Annales de l'I.H.P. Physique théorique, Tome 45 (1986) no. 3, pp. 293-309. http://archive.numdam.org/item/AIHPA_1986__45_3_293_0/
[1] Journ. Math. Phys., t. 26, 1985, p. 2473. | MR | Zbl
, and ,[2] J. Math. Phys., t. 25, 1984, p. 3252. | MR
,[3] Geoexploration, t. 23, 1984-1985, p. 85.
, and ,[4] Wave functions on subgroups of the group of affine canonical transformations. In : Resonances. Models and Phenonema. S. Albeverio, L. S. Ferreira and L. Streit, editors. Springer, Lecture Notes in Physics, Vol. 211, 1984, p. 128. | MR
and ,[5] Affine coherent states and the radial Schrödinger equation I. Radial harmonic oscillator and hydrogen atom, II Large N limit and III Affine Wigner functions, preprints, Luminy. Submitted to Annals of I. H. P.
,[6] Dokl-Akad-Navk SSSR, t. 55, 1954, p. 570.
and ,[7] J. Math. Phys., t. 9, 1968, p. 206. | Zbl
and ,