Transforms associated to square integrable group representations. II : examples
Annales de l'I.H.P. Physique théorique, Tome 45 (1986) no. 3, pp. 293-309.
@article{AIHPA_1986__45_3_293_0,
     author = {Grossmann, A. and Morlet, J. and Paul, T.},
     title = {Transforms associated to square integrable group representations. {II} : examples},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {293--309},
     publisher = {Gauthier-Villars},
     volume = {45},
     number = {3},
     year = {1986},
     mrnumber = {868528},
     zbl = {0601.22001},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPA_1986__45_3_293_0/}
}
TY  - JOUR
AU  - Grossmann, A.
AU  - Morlet, J.
AU  - Paul, T.
TI  - Transforms associated to square integrable group representations. II : examples
JO  - Annales de l'I.H.P. Physique théorique
PY  - 1986
SP  - 293
EP  - 309
VL  - 45
IS  - 3
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPA_1986__45_3_293_0/
LA  - en
ID  - AIHPA_1986__45_3_293_0
ER  - 
%0 Journal Article
%A Grossmann, A.
%A Morlet, J.
%A Paul, T.
%T Transforms associated to square integrable group representations. II : examples
%J Annales de l'I.H.P. Physique théorique
%D 1986
%P 293-309
%V 45
%N 3
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPA_1986__45_3_293_0/
%G en
%F AIHPA_1986__45_3_293_0
Grossmann, A.; Morlet, J.; Paul, T. Transforms associated to square integrable group representations. II : examples. Annales de l'I.H.P. Physique théorique, Tome 45 (1986) no. 3, pp. 293-309. http://archive.numdam.org/item/AIHPA_1986__45_3_293_0/

[1] A. Grossmann, J. Morlet and T. Paul, Journ. Math. Phys., t. 26, 1985, p. 2473. | MR | Zbl

[2] T. Paul, J. Math. Phys., t. 25, 1984, p. 3252. | MR

[3] P. Goupillaud, A. Grossmann and J. Morlet, Geoexploration, t. 23, 1984-1985, p. 85.

[4] A. Grossmann and T. Paul, Wave functions on subgroups of the group of affine canonical transformations. In : Resonances. Models and Phenonema. S. Albeverio, L. S. Ferreira and L. Streit, editors. Springer, Lecture Notes in Physics, Vol. 211, 1984, p. 128. | MR

[5] T. Paul, Affine coherent states and the radial Schrödinger equation I. Radial harmonic oscillator and hydrogen atom, II Large N limit and III Affine Wigner functions, preprints, Luminy. Submitted to Annals of I. H. P.

[6] I.M. Gelfand and M.A. Naimark, Dokl-Akad-Navk SSSR, t. 55, 1954, p. 570.

[7] E.W. Aslasken and J.R. Klauder, J. Math. Phys., t. 9, 1968, p. 206. | Zbl