Scattering theory for hamiltonians with Stark effect
Annales de l'I.H.P. Physique théorique, Tome 46 (1987) no. 4, pp. 383-395.
@article{AIHPA_1987__46_4_383_0,
     author = {Jensen, Arne},
     title = {Scattering theory for hamiltonians with {Stark} effect},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {383--395},
     publisher = {Gauthier-Villars},
     volume = {46},
     number = {4},
     year = {1987},
     zbl = {0677.34026},
     mrnumber = {912156},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPA_1987__46_4_383_0/}
}
TY  - JOUR
AU  - Jensen, Arne
TI  - Scattering theory for hamiltonians with Stark effect
JO  - Annales de l'I.H.P. Physique théorique
PY  - 1987
DA  - 1987///
SP  - 383
EP  - 395
VL  - 46
IS  - 4
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPA_1987__46_4_383_0/
UR  - https://zbmath.org/?q=an%3A0677.34026
UR  - https://www.ams.org/mathscinet-getitem?mr=912156
LA  - en
ID  - AIHPA_1987__46_4_383_0
ER  - 
Jensen, Arne. Scattering theory for hamiltonians with Stark effect. Annales de l'I.H.P. Physique théorique, Tome 46 (1987) no. 4, pp. 383-395. http://archive.numdam.org/item/AIHPA_1987__46_4_383_0/

[1] J.E. Avron, I.W. Herbst, Spectral and scattering theory for Schrödinger operators related to Stark effect. Commun. Math. Phys., t. 52, 1977, p. 239-254. | MR 468862 | Zbl 0351.47007

[2] M. Ben-Artzi, Remarks on Schrödinger operators with an electric field and deterministic potentials. J. Math. Anal. Appl., t. 109, 1985, p. 333-339. | MR 802899 | Zbl 0579.34018

[3] M. Ben-Artzi, A. Devinatz, The limiting absorption principle for partial differential operators. Preprint, 1985. | MR 878907

[4] F. Bentosela, R. Carmona, P. Duclos, B. Simon, B. Souillard, R. Weder, Schrödinger operators with an electric field and random or deterministic potentials. Commun. Math. Phys., t. 88, 1983, p. 387-397. | MR 701924 | Zbl 0531.60061

[5] R. Carmona, One-dimensional Schrödinger operators with random or deterministic potentials: New spectral types. J. Funct. Anal., t. 51, 1983, p. 229-258. | MR 701057 | Zbl 0516.60069

[6] F. Delyon, B. Simon, B. Souillard, From power pure point to continuous spectrum in disordered systems. Ann. Inst. H. Poincaré, Sect. A, t. 42, 1985, p. 283-309. | Numdam | MR 797277 | Zbl 0579.60056

[7] W. Herbst, Unitary equivalence of Stark effect Hamiltonians. Math. Z., t. 155, 1977, p. 55-70. | MR 449318 | Zbl 0338.47009

[8] I.W. Herbst, B. Simon, Dilation analyticity in constant electric fields. II. N-body problem, Borel summability. Commun. Math. Phys., t. 80, 1981, p. 181-216. | MR 623157 | Zbl 0473.47038

[9] A. Jensen, Propagation estimates for Schrödinger-type operators. Trans. Amer. Math. Soc., t. 291, 1985, p. 129-144. | MR 797050 | Zbl 0577.35089

[10] A. Jensen, Asymptotic completeness for a new class of Stark effect Hamiltonians. Commun. Math. Phys., t. 107, 1986, p. 21-28. | MR 861882 | Zbl 0606.34020

[11] A. Jensen, Commutator methods and asymptotic completeness for one-dimensional Stark effect Hamiltonians. Schrödinger operators, Aarhus 1985 (ed. E. Balslev). Springer, Lecture Notes in Mathematics, vol. 1218, 1986, p. 151-166. | MR 869600 | Zbl 0608.35013

[12] A. Jensen, E. Mourre, P. Perry, Multiple commutator estimates and resolvent smoothness in quantum scattering theory. Ann. Inst. H. Poincaré, Sect. A, t. 41, 1984, p. 207-224. | Numdam | MR 769156 | Zbl 0561.47007

[13] T. Kato, Perturbation theory for linear operators. Springer Verlag, Heidelberg, Berlin, New York, 2nd edition, 1976. | MR 407617 | Zbl 0342.47009

[14] E. Mourre, Link between the geometrical and the spectral transformation approach in scattering theory. Commun. Math. Phys., t. 68, 1979, p. 91-94. | MR 539739 | Zbl 0429.47006

[15] P. Perry, Scattering theory by the Enss method. Math. Reports, t. 1, part 1, 1983. | MR 752694 | Zbl 0875.47001

[16] P. Perry, I. Sigal, B. Simon, Spectral analysis of N-body Schrödinger operators. Ann. Math., t. 114, 1981, p. 519-567. | MR 634428 | Zbl 0477.35069

[17] P.A. Rejto, K.B. Sinha, Absolute continuity for a 1-dimensional model of the Stark-Hamiltonian. Helv. Phys. Acta, t. 49, 1976, p. 389-413. | MR 416356

[18] B. Simon, Phase space analysis of simple scattering systems: Extensions of some work of Enss. Duke Math. J., t. 46, 1979, p. 119-168. | MR 523604 | Zbl 0402.35076

[19] K. Veselic, J. Weidmann, Potential scattering in a homogeneous electrostatic field. Math. Z., t. 156, 1977, p. 93-104. | MR 510118 | Zbl 0364.35042

[20] J. Weidmann, Linear operators in Hilbert space. Graduate Texts in Mathematics, Springer Verlag, Heidelberg, Berlin, New York, 1980. | MR 566954 | Zbl 0434.47001

[21] K. Yajima, Spectral and scattering theory for Schrödinger operators with Stark effect. J. Fac. Sci. Univ. Tokyo, Sect. IA, t. 26, 1979, p. 377-390. | MR 560003 | Zbl 0429.35027