@article{AIHPA_1987__46_4_383_0, author = {Jensen, Arne}, title = {Scattering theory for hamiltonians with {Stark} effect}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {383--395}, publisher = {Gauthier-Villars}, volume = {46}, number = {4}, year = {1987}, mrnumber = {912156}, zbl = {0677.34026}, language = {en}, url = {http://archive.numdam.org/item/AIHPA_1987__46_4_383_0/} }
Jensen, Arne. Scattering theory for hamiltonians with Stark effect. Annales de l'I.H.P. Physique théorique, Tome 46 (1987) no. 4, pp. 383-395. http://archive.numdam.org/item/AIHPA_1987__46_4_383_0/
[1] Spectral and scattering theory for Schrödinger operators related to Stark effect. Commun. Math. Phys., t. 52, 1977, p. 239-254. | MR | Zbl
, ,[2] Remarks on Schrödinger operators with an electric field and deterministic potentials. J. Math. Anal. Appl., t. 109, 1985, p. 333-339. | MR | Zbl
,[3] The limiting absorption principle for partial differential operators. Preprint, 1985. | MR
, ,[4] Schrödinger operators with an electric field and random or deterministic potentials. Commun. Math. Phys., t. 88, 1983, p. 387-397. | MR | Zbl
, , , , , ,[5] One-dimensional Schrödinger operators with random or deterministic potentials: New spectral types. J. Funct. Anal., t. 51, 1983, p. 229-258. | MR | Zbl
,[6] From power pure point to continuous spectrum in disordered systems. Ann. Inst. H. Poincaré, Sect. A, t. 42, 1985, p. 283-309. | Numdam | MR | Zbl
, , ,[7] Unitary equivalence of Stark effect Hamiltonians. Math. Z., t. 155, 1977, p. 55-70. | MR | Zbl
,[8] Dilation analyticity in constant electric fields. II. N-body problem, Borel summability. Commun. Math. Phys., t. 80, 1981, p. 181-216. | MR | Zbl
, ,[9] Propagation estimates for Schrödinger-type operators. Trans. Amer. Math. Soc., t. 291, 1985, p. 129-144. | MR | Zbl
,[10] Asymptotic completeness for a new class of Stark effect Hamiltonians. Commun. Math. Phys., t. 107, 1986, p. 21-28. | MR | Zbl
,[11] Commutator methods and asymptotic completeness for one-dimensional Stark effect Hamiltonians. Schrödinger operators, Aarhus 1985 (ed. E. Balslev). Springer, Lecture Notes in Mathematics, vol. 1218, 1986, p. 151-166. | MR | Zbl
,[12] Multiple commutator estimates and resolvent smoothness in quantum scattering theory. Ann. Inst. H. Poincaré, Sect. A, t. 41, 1984, p. 207-224. | Numdam | MR | Zbl
, , ,[13] Perturbation theory for linear operators. Springer Verlag, Heidelberg, Berlin, New York, 2nd edition, 1976. | MR | Zbl
,[14] Link between the geometrical and the spectral transformation approach in scattering theory. Commun. Math. Phys., t. 68, 1979, p. 91-94. | MR | Zbl
,[15] Scattering theory by the Enss method. Math. Reports, t. 1, part 1, 1983. | MR | Zbl
,[16] Spectral analysis of N-body Schrödinger operators. Ann. Math., t. 114, 1981, p. 519-567. | MR | Zbl
, , ,[17] Absolute continuity for a 1-dimensional model of the Stark-Hamiltonian. Helv. Phys. Acta, t. 49, 1976, p. 389-413. | MR
, ,[18] Phase space analysis of simple scattering systems: Extensions of some work of Enss. Duke Math. J., t. 46, 1979, p. 119-168. | MR | Zbl
,[19] Potential scattering in a homogeneous electrostatic field. Math. Z., t. 156, 1977, p. 93-104. | MR | Zbl
, ,[20] Linear operators in Hilbert space. Graduate Texts in Mathematics, Springer Verlag, Heidelberg, Berlin, New York, 1980. | MR | Zbl
,[21] Spectral and scattering theory for Schrödinger operators with Stark effect. J. Fac. Sci. Univ. Tokyo, Sect. IA, t. 26, 1979, p. 377-390. | MR | Zbl
,