@article{AIHPA_1988__48_4_423_0, author = {Giorgilli, Antonio}, title = {Rigorous results on the power expansions for the integrals of a hamiltonian system near an elliptic equilibrium point}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {423--439}, publisher = {Gauthier-Villars}, volume = {48}, number = {4}, year = {1988}, mrnumber = {969174}, zbl = {0669.34002}, language = {en}, url = {http://archive.numdam.org/item/AIHPA_1988__48_4_423_0/} }
TY - JOUR AU - Giorgilli, Antonio TI - Rigorous results on the power expansions for the integrals of a hamiltonian system near an elliptic equilibrium point JO - Annales de l'I.H.P. Physique théorique PY - 1988 SP - 423 EP - 439 VL - 48 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPA_1988__48_4_423_0/ LA - en ID - AIHPA_1988__48_4_423_0 ER -
%0 Journal Article %A Giorgilli, Antonio %T Rigorous results on the power expansions for the integrals of a hamiltonian system near an elliptic equilibrium point %J Annales de l'I.H.P. Physique théorique %D 1988 %P 423-439 %V 48 %N 4 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPA_1988__48_4_423_0/ %G en %F AIHPA_1988__48_4_423_0
Giorgilli, Antonio. Rigorous results on the power expansions for the integrals of a hamiltonian system near an elliptic equilibrium point. Annales de l'I.H.P. Physique théorique, Tome 48 (1988) no. 4, pp. 423-439. http://archive.numdam.org/item/AIHPA_1988__48_4_423_0/
[1] Dynamical systems, New York, 1927. | JFM
,[2] On the adelphic integral of the differential equations of dynamics. Proc. Roy Soc. Edinburgh, Sect. A, t. 37, 1916, p. 95-109. | JFM
,A treatise on the analytical dynamics of particles and rigid bodies, London, 1970, p. 432 ff.
,[3] On integrals developable about a singular point of a Hamiltonian system of differential equations. Proc. Camb. Phil. Soc., t. 22, 1924, p. 325-349. | JFM
,On integrals developable about a singular point of a Hamiltonian system of differential equations. II. Proc. Camb. Phil. Soc., t. 22, 1924, p. 510-533. | JFM
,[4] On constructing formal integrals of a Hamiltonian system near an equilibrium point. Astron. J., t. 71, 1966, p. 670-686.
,Lectures on Hamiltonian systems. Mem. Amer. Math. Soc., t. 81, 1968, p. 11 ff. | MR | Zbl
,[5] A third integral of motion in a Galaxy. Z. Astrophys., t. 49, 1960, p. 273-291. | MR | Zbl
,Resonant case and small divisors in a third integral of motion. I. Astron. J., t. 68, 1963, p. 763-779. | MR
,Resonant case and small divisors in a third integral of motion, II. Astron. J., t. 70, 1965, p. 817-835.
,[6] On the direct construction of formal integrals of a Hamiltonian system near an equilibrium point. Boll. Un. Mat. It., t. 11, 1975, p. 84-89. | MR | Zbl
, , and ,[7] On the integrals of canonical systems. Ann. Math., t. 42, 1941, p. 806-822. | JFM | MR | Zbl
,[8] Stabilitätsverhalten kanonisher differentialgleichungssysteme. Nachr. Akad. Wiss. Göttingen, Math. Phys. K1 IIa, nr., t. 6, 1955, p. 87-120. | MR | Zbl
,[9] Exponential estimate of the stability time of near-integrable Hamiltonian systems. Russ. Math. Surveys, t. 32, n° 6, 1977, p. 1-65. | Zbl
,Exponential estimate of the stability time of near-integrable Hamiltonian systems, II. Trudy Sem. Petrovs., n° 5, 1979, p. 5-50 (in russian). | Zbl
,A proof of Nekhoroshev's theorem for the stability times in nearly integrable Hamiltoniar systems. Cel. Mech., t. 37, 1985, p. 1-25. | MR | Zbl
, and ,Stability of motion near resonances in quasi integrable Hamiltonian systems. J. Stat. Phys., t. 44, 1986, p. 293-338. | MR | Zbl
and ,Quasi-integrable mechanical systems, in K. Osterwalder and R. Stora (eds.). Les Houches, Session XLIII, 1984. | Zbl
,[10] Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to be restricted three body problem. J. Diff. Eqs., to appear. | Zbl
, , , and ,Rigorous estimates for the series expansions of Hamiltonian perturbation theory. Cel. Mech., t. 37, 1985, p. 95-112. | MR
, ,[11] On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus, in J. Ehlers, K. Hepp and H. A. Weidenmüller, eds., Dynamical systems, theory and applications. Lecture notes in Physics, t. 38, 1974, p. 598-624. | MR | Zbl
,[12] Formal integrals for an autonomous Hamiltonian system near an equilibrium point. Cel. Mech., t. 17, 1978, p. 267-280. | MR | Zbl
and ,