@article{AIHPA_1989__50_2_187_0, author = {Droz-Vincent, Philippe}, title = {Two-body relativistic systems in external field}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {187--204}, publisher = {Gauthier-Villars}, volume = {50}, number = {2}, year = {1989}, mrnumber = {1002819}, zbl = {0671.70008}, language = {en}, url = {http://archive.numdam.org/item/AIHPA_1989__50_2_187_0/} }
TY - JOUR AU - Droz-Vincent, Philippe TI - Two-body relativistic systems in external field JO - Annales de l'I.H.P. Physique théorique PY - 1989 SP - 187 EP - 204 VL - 50 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPA_1989__50_2_187_0/ LA - en ID - AIHPA_1989__50_2_187_0 ER -
Droz-Vincent, Philippe. Two-body relativistic systems in external field. Annales de l'I.H.P. Physique théorique, Volume 50 (1989) no. 2, pp. 187-204. http://archive.numdam.org/item/AIHPA_1989__50_2_187_0/
[1] Relativistic Action-at-a-Distance Classical and Quantum Aspects. Lecture Notes in Physics, n° 162, J. Llosa Editor, Springer Verlag, 1982, and references therein. | MR
[2] Reports on Mathematical Physics, t. 8, n° 1, 1975, p. 79. | MR
,[3] Phys. Rev., t. D 19, 1979, p. 702. | MR
,[4] Ann. Phys. (N.-Y.), t. 112, 1978, p. 94. Phys. Lett., t. B73, 1978, p. 75. | MR
, ,[5] J. I. N. R. Report E2-10125, Dubna, 1976, and contribution to Ref. 1,
,[6] Differential Geometry and Relativity, M. Cahen and M. Flato Editors, Reidel-Dordrecht, 1976; Phys. Rev., t. D 28, 1983, p. 1308. | MR
, In[7] Ann. Phys. (N-Y), t. 148, 1983, p. 1308 ; Phys. Rev., t. D 30, 1984, p. 2585. | MR
and ,[8] Nuovo Cimento, t. 58 A, 1980, p. 355.
,[9] Phys. Rev., t. D 29, 1984, p. 687. Beware that (in contrast to Ref. 8) the convention made in this article is pa = - i∂a, thus the phase in the evolution operators U, U has been choosen with the wrong sign which amounts to exchange in and out - states, Ω+ and Ω-, S and S*. This does not affect the results of this paper (invariance of mass-shell, unitarity, etc.) but should be taken into account in case of a practical application. | MR
,[10] Phys. Rev., t. D 24, 1981, p. 1528 ; t. 26, 1982, p. 3452.
, ,[11] Ann. of Phys., t. 165, 1985, p. 59. | MR
, , ,[12] Ann. Inst. H. Poincaré, t. A 27, 1977, p. 407. | Numdam | MR
,[13] Comm. Math. Phys., t. 79, 1981, p. 111. | MR
, ,[14] Ann. Inst. H. Poincaré, t. 24, n° 4, 1976, p. 347. | Numdam
, ,[15] Theor. Math. Phys., t. 36, 1979, p. 682; Theor. Math. Phys., t. 37, 1979, p. 1029.
,[16] Ann. Inst. H. Poincaré, t. A 32, 1980, p. 377. | Numdam | MR
,[17] Lett. Math. Phys., t. 5, 1981, p. 319. | MR
,[18] Lett. Math. Phys., t. 5, 1981, p. 461. | MR
, ,[19] Phys. Rev., t. D 23, 1981, p. 1305.
,[20] Lett. Math. Phys., t. 6, 1982, p. 325. | MR
, ,[21] Ph. DROZ-VINCENT, Lett. Nuov. Cimento, t. 1, 1969, p. 839 ; Physica Scripta, t. 2, 1970, p. 129 and Refs. [2], [3], [12]. , Archiv. Rat. Mech. Analy., t. 47, 1972, p. 255. L. BEL, Ann. Inst. H. Poincaré, t. 3, 1970, p. 307, and Ref. [6].
[22] Nuovo Cimento, t. 65 B, 1981, p. 135. | MR
,[23] Nuovo Cim., t. B 61, 1981, p. 306.
, , , ,[24] « Few Body Systems », t. 3, 1987, p. 41.
, to appear in[25] The quantized version of the oscillator considered in Ref. [12] is finally equivalent to the one given by Phys. Rev., t. D 12, 1975, p. 122 and 129. See Ref. [28] below.
and ,[26] Lett. Nuovo Cim., t. 30, 1981, p. 375. | MR
,Phys. Rev., t. D, 1983, p. 1308.
,[27] Alternatively, the use of Weyl spinors with a pair of coupled Feynman-Gell-Mann equations seems to open new simplifications.
Phys. Letters, t. A 120, 1987, p. 313. | MR
,[28] Nuovo Cim., t. 29, 1963, p. 380.
, ,Nuovo Cim., t. 30, 1963, p. 134.
, , , ,Nuclear Physics, t. B 98, 1975, p. 447.
, , ,[29] Ann. Inst. H. Poincaré, t. 40, 1984, p. 1.
, , , ,[30] From a purely axiomatic point of view the concept of « free » system is rather flexible. This is made clear for instance in W. O. Amrein, Non-Relativistic Quantum Dynamics, Mathematical Physics Studies n° 2, Reidel-Dordrecht, 1981, chap. 5, p. 125.
[31] Les Fondements de la Mécanique Céleste, Gordon and Breach, London, 1970, chap. IV, p. 151-152. | Zbl
,We notice that the spring constant is not a first integral, but simply a parameter. According to Lagrange method it is not supposed to vary.
[32]
, Contribution to Ref. [1] and also the last Ref. [27].J. Math. Phys., t. 17, 1976, p. 506. | MR
, ,J. Math. Phys., t. 21, 1980, p. 568. | MR
,