Floquet operators with singular spectrum. I
Annales de l'I.H.P. Physique théorique, Volume 50 (1989) no. 3, pp. 309-323.
@article{AIHPA_1989__50_3_309_0,
     author = {Howland, James S.},
     title = {Floquet operators with singular spectrum. {I}},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {309--323},
     publisher = {Gauthier-Villars},
     volume = {50},
     number = {3},
     year = {1989},
     mrnumber = {1017967},
     zbl = {0689.34022},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPA_1989__50_3_309_0/}
}
TY  - JOUR
AU  - Howland, James S.
TI  - Floquet operators with singular spectrum. I
JO  - Annales de l'I.H.P. Physique théorique
PY  - 1989
SP  - 309
EP  - 323
VL  - 50
IS  - 3
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPA_1989__50_3_309_0/
LA  - en
ID  - AIHPA_1989__50_3_309_0
ER  - 
%0 Journal Article
%A Howland, James S.
%T Floquet operators with singular spectrum. I
%J Annales de l'I.H.P. Physique théorique
%D 1989
%P 309-323
%V 50
%N 3
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPA_1989__50_3_309_0/
%G en
%F AIHPA_1989__50_3_309_0
Howland, James S. Floquet operators with singular spectrum. I. Annales de l'I.H.P. Physique théorique, Volume 50 (1989) no. 3, pp. 309-323. http://archive.numdam.org/item/AIHPA_1989__50_3_309_0/

[1] J. Bellissard, Stability and Instability in Quantum Mechanics in Trends and Developments in the Eighties, ALBEVARIO and BLANCHARD Eds., World Scientific, Singapore, 1985. | MR

[2] J. Bellissard, Stability and Chaotic Behavior of Quantum Rotors in Stochastic Processes in Classical and Quantum Systems, S. ALBEVARIO, G. CASATI and D. MERLINI Eds., Lec. Notes in Phys., Vol. 262, 1986, pp. 24-38, Springer-Verlag, New York. | MR

[3] M. Combescure, The Quantum Stability Problem for Time-Periodic Perturbations of the Harmonic Oscillator, Ann. Inst. H. Poincaré, vol. 47, 1987, pp. 63-84; 451-4. | Numdam | MR | Zbl

[4] T. Kato, Wave Operators and Similarity for Sone Non-Self-Adjoint Operators, Math. Ann., Vol. 162, 1966, pp. 258-279. | MR | Zbl

[5] T. Kato, Perturbation Theory for Linear Operators, 1st edition, Springer-Verlag, New York, 1966. | MR | Zbl

[6] G. Hagadorn, M. Loss and J. Slawny, Non-Stochasticity of Time-Dependent Quadratic Hamiltonians and the Spectra of Transformations, J. Phys. A., Vol. 19, 1986, pp. 521-531. | MR | Zbl

[7] J.S. Howland, Scattering Theory for Hamiltonians Periodic in Time, Indiana J. Math., Vol. 28, 1979, pp. 471-494. | MR | Zbl

[8] J.S. Howland, Perturbation Theory of Dense Point Spectrum. J. Func. Anal., Vol. 74, 1987, pp. 52-80. | MR | Zbl

[9] J.S. Howland, Random Perturbation Theory and Quantum Chaos in Differential Equations and Mathematical Physics, pp. 197-204, I.W. Knowles and Y. Saito Eds., Lec. Notes in Math., Vol. 1285, Springer-Verlag, New York, 1987. | MR | Zbl

[10] J.S. Howland, A Localization Theorem for One-Dimensional Schroedinger Operators (to appear).

[11] M. Samuels, R. Fleckinger, L. Touzillier and J. Bellissard, The Rise of Chaotic Behavior in Quantum Systems and Spectral Transition, Europhys. Lett., Vol. 1, 1986, pp. 203-208.

[12] B. Simon and T. Wolff, Singular Continuous Spectrum Under Rank Are Perturbations and Localization for Random Hamiltonians, Comm. Pure Appl. Math., Vol. 39, 1986, pp. 75-90. | MR | Zbl

[13] K. Yajima, Scattering Theory for Schroedinger Equation with Potential Periodic in Time, J. Math Soc. Japan, vol. 29, 1977, pp. 729-743. | MR | Zbl

[14] J. Avron, R. Seiler and L.G. Yaffe, Adiabatic Theorems and Applications to the Quantum Hall Effect, Comm. Math. Phys., Vol. 110, 1987, pp. 33-49. | MR | Zbl