Resonance theory of two-body Schrödinger operators
Annales de l'I.H.P. Physique théorique, Volume 51 (1989) no. 2, p. 129-154
@article{AIHPA_1989__51_2_129_0,
     author = {Balslev, Erik and Skibsted, E.},
     title = {Resonance theory of two-body Schr\"odinger operators},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     publisher = {Gauthier-Villars},
     volume = {51},
     number = {2},
     year = {1989},
     pages = {129-154},
     zbl = {0714.35063},
     mrnumber = {1033614},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1989__51_2_129_0}
}
Balslev, E.; Skibsted, E. Resonance theory of two-body Schrödinger operators. Annales de l'I.H.P. Physique théorique, Volume 51 (1989) no. 2, pp. 129-154. http://www.numdam.org/item/AIHPA_1989__51_2_129_0/

[1] S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. di Pisa, Vol. 4, 2, 1975, pp. 151-218. | Numdam | MR 397194 | Zbl 0315.47007

[2] S. Agmon, A representation theorem for solutions of the Helmholtz equation and resolvent estimates for the Laplacian, in Jürgen Moser 60th birthday volume (to appear). | MR 1039339 | Zbl 0704.35018

[3] P. Alsholm and G. Schmidt, Spectral and scattering theory for Schrödinger operators, Arch. Rat. Mech. Anal., Vol. 40, 1971, pp. 281-311. | MR 279631 | Zbl 0226.35076

[4] E. Balslev, Analytic scattering theory of two-body Schrödinger operators, J. Funct. Anal., Vol. 29, 3, 1978, pp. 375-396. | MR 512251 | Zbl 0392.47003

[5] E. Balslev, Analyticity properties of Eigenfunctions and Scattering Matrix, Comm. Math. Phys. vil., Vol. 114, No. 4, 1988, pp. 599-612. | MR 929132 | Zbl 0662.35079

[6] E. Balslev, Asymptotic properties of resonance functions and generalized eignenfunctions, in Schrödinger operators, Nordic Summer School, 1988, Springer Lecture Notes in Mathematics (to appear). | MR 1037316 | Zbl 0702.35194

[7] E. Balslev and E. Skibsted, Resonance theory for two-body Schrödinger operators, Aarhus Universitet Preprint, Series 1987-1988, No. 7.

[8] E. Balslev and E. Skibsted, Analytic and asymptotic properties of resonance functions (to appear).

[9] U. Greifenegger, K. Jörgens, J. Weidmann and M. Winkler, Streutheorie für Schrödinger Operatoren, 1972 (preprint).

[10] T. Ikebe and Y. Saito, Limiting absorption method and absolute continuity, J. Math. Kyoto Univ., Vol. 12, 1972, pp. 513-542. | MR 312066 | Zbl 0257.35022

[11] T. Kako and K. Yajima, Spectral and scattering theory for a class of non-self adjoint operators, Sci. Papers College Gen. Ed. Univ. Tokyo, Vol. 26, 1976, pp. 73-89. | MR 500220 | Zbl 0349.47010

[12] S.T. Kuroda, Scattering theory for differential operators I, J. Math. Soc. Japan, Vol. 25, 1973, pp. 75-104. | MR 326435 | Zbl 0245.47006

[13] S.T. Kuroda, An introduction to scattering theory, Lect. Notes, Vol. 51, 1980, Matematisk Institut, Aarhus. | MR 528757 | Zbl 0407.47003

[14] Y. Saito, Extended limiting absorption method and analyticity of the S-matrix, J. f. d. reine u. angewdt. Math., Vol. 343, 1983, pp. 1-22. | MR 705874 | Zbl 0506.35025

[15] N. Shenk and D. Thoe, Eigenfunction expansions and scattering theory for parturbations of -Δ, Rocky Mountain J. Math., Vol. 1, 1971, pp. 89-125. | MR 287189 | Zbl 0254.47017

[16] E. Skibsted, On the evolution of resonance states, J. Math. Anal. Appl. Vol. 141, No 1, 1989, pp. 28-48. | MR 1004582 | Zbl 0688.47006