Resonances of N-body Schrödinger operators with stark effect
Annales de l'I.H.P. Physique théorique, Volume 52 (1990) no. 1, p. 1-30
@article{AIHPA_1990__52_1_1_0,
     author = {Wang, Xue Ping},
     title = {Resonances of N-body Schr\"odinger operators with stark effect},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     publisher = {Gauthier-Villars},
     volume = {52},
     number = {1},
     year = {1990},
     pages = {1-30},
     zbl = {0702.35187},
     mrnumber = {1046083},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1990__52_1_1_0}
}
Wang, Xue-Ping. Resonances of N-body Schrödinger operators with stark effect. Annales de l'I.H.P. Physique théorique, Volume 52 (1990) no. 1, pp. 1-30. http://www.numdam.org/item/AIHPA_1990__52_1_1_0/

[1] S. Agmon, Lectures on Exponential Decay of Solutions of Second Order Elliptic Equations, Math. Notes, No. 29, Princeton Univ. Press, 1982. | MR 745286 | Zbl 0503.35001

[2] J. Aguilar and J.M. Combes, A Class of analytic Perturbations for One-body Schrödinger Hamiltonians, Comm. Math. Phys., Vol. 22, 1971, pp. 269-279. | MR 345551 | Zbl 0219.47011

[3] P. Aventini and R. Seiler, On the Electronic Spectrum of the Diatomic Molecular Iron, Comm. Math. Phys., Vol. 41, 1975, pp. 119-134. | MR 371301

[4] E. Balslev and J.M. Combes, Spectral Properties of Many-Body Schrödinger Operators with Dilation Analytic Interactions, Comm. Math. Phys., Vol. 22, 1971, pp. 180-194. | MR 345552 | Zbl 0219.47005

[5] J.M. Combes, P. Duclos, M. Klein and R. Seiler, The Shape Resonances, Comm. Math. Phys., Vol. 110, 1987, pp. 215-236. | MR 887996 | Zbl 0629.47044

[6] H.L. Cycon, Resonances Defined by Modified Dilations, Helv. Phys. Acta, Vol. 58, 1985, pp. 969-981. | MR 821113

[7] P. Deift, W. Hunziker, B. Simon and E. Vock, Pointwise Bounds on Eigenfunctions and Wave Packets in N-Body Quantum Systems. IV., Comm. Math. Phys., Vol. 64, 1978, pp. 1-34. | MR 516993 | Zbl 0419.35079

[8] S. Graffi and V. Grecchi, Resonances in Stark Effect and Perturbation Theory, Comm. Math. Phys., Vol. 62, 1979, pp. 63-96. | MR 506369

[9] S. Graffi and V. Grecchi, Resonances in the Stark Effect of Atomic Systems, Comm. Math. Phys., Vol. 79, 1981, pp. 91-109. | MR 609230 | Zbl 0493.35034

[10] E.M. Harrell and B. Simon, The Mathematical Theory of Resonances Whose Widths are Exponentially small, Duke Math. J., Vol. 47, 1980, pp. 845-902. | MR 596118 | Zbl 0455.35091

[11] B. Helffer and J. Sjöstrand, Multiple Wells in the Semiclassical Limit. I, Comm. in P.D.E., Vol. 9, 1984, pp. 337-408. | MR 740094 | Zbl 0546.35053

[12] B. Helffer and J. Sjöstrand, Résonances en limite semi-classique, Bull. Soc. Math. France, Mémoire No. 24/25, 1986. | Numdam | Zbl 0631.35075

[13] I. Herbst, Dilation Analyticity in Constant Electric Field, I: the Two-Body Problem, Comm. Math. Phys., Vol. 64, 1979, pp. 279-298. | MR 520094 | Zbl 0447.47028

[14] I. Herbst, Contraction Semigroups and the Spectrum of A1⊗I+I⊗A2, J. Operator Theory, Vol. 7, 1982, pp. 61-78. | MR 650193 | Zbl 0484.47017

[15] I. Herbst, B. Simon, Dilation Analyticity in Constant Electric Field, II: N-Body Problem, Borel Summability, Comm. Math. Phys., Vol. 80, 1981, pp. 181-216. | MR 623157 | Zbl 0473.47038

[16] P.D. Hislop and I.M. Sigal, Sphape Resonances in Quantum Mechanics, Memoirs of A.M.S. (to appear). | MR 921268

[17] L. Hörmander, The Analysis of Linear Partial Differential Operators, III, Springer-Verlag, Berlin, Heidelberg, 1985. | MR 781536 | Zbl 0601.35001

[18] W. Hunziker, Distortion Analyticity and Molecular Resonance curves, Ann. Inst. Henri Poincaré, sect. A, Vol. 45, 1986, pp. 339-358. | Numdam | MR 880742 | Zbl 0619.46068

[19] T. Kato, Perturbation Theory for Linear Operators, Berlin Heidelberg, Springer-Verlag, 1966. | MR 203473 | Zbl 0148.12601

[20] L.D. Landau and E.M. Lifshitz, Quantum Mechanics, New York, Pergamon Press, 1977.

[21] M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV., New York, Academic Press, 1978. | MR 751959 | Zbl 0401.47001

[22] D. Robert and X.P. Wang, Time-Delay and Spectral Density for Stark Hamiltonians, I. Existence of Time-Delay Operator, Commun. in P.D.E., Vol. 14, 1989.

[23] B. Simon, The Definition of Molecular Resonance Curves by the Method of Exterior Complex Scaling, Phys. Lett., Vol. 71 A, 1979, pp. 211-214.

[24] E.C. Titchmarsh, Eigenfunction Expansions Associated with Second Order Differential Equations, II., Oxford Univ. Press, 1958. | MR 94551 | Zbl 0097.27601

[25] X.P. Wang, Low Energy Resolvent Estimates and Continuity of time-Delay Operators, Proc. R. Soc. Edinburgh, Vol. 105A, 1987, pp. 229-242. | MR 890058 | Zbl 0647.35015

[26] X.P. Wang, Bound on Width of Resonances for Stark Hamiltonians, Acta Math. Sinica (in press). | Zbl 0714.35056

[27] X.P. Wang, Asymptotics on Width of Resonances for Stark Hamiltonians (to appear).

[28] I.W. Herbst, Schrödinger Operators with External Homogeneous Electric and Magnetic Fields, Proc. of Int. School Math. Phys., Erice, 1980, pp. 131-183.

[29] I.M. Sigal, Sharp Exponential bounds on Resonances States and Width of Resonances, Adv. in Appl. Math., 1988. | MR 937519 | Zbl 0652.47008

[30] I.M. Signal, Geometric Theory of Stark Resonances in Multi-electron Systems, Comm. in Math. Phys., Vol. 119, 1988, p. 287-314. | MR 968699 | Zbl 0672.58050

[31] X.P. Wang, Resonances of N-Body Schrödinger Operators with Stark Effect, in Annual Report, Inst. Math., Academia Sinica, 1987, pp. 108-126.