Analyticity and Borel summability of the φ 4 models. I. The dimension d=1
Annales de l'I.H.P. Physique théorique, Tome 59 (1993) no. 2, pp. 141-199.
@article{AIHPA_1993__59_2_141_0,
     author = {Billionnet, Claude and Renouard, Pierre},
     title = {Analyticity and Borel summability of the $\phi ^4$ models. I. The dimension $d = 1$},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {141--199},
     publisher = {Gauthier-Villars},
     volume = {59},
     number = {2},
     year = {1993},
     zbl = {0791.46058},
     language = {en},
     url = {archive.numdam.org/item/AIHPA_1993__59_2_141_0/}
}
Billionnet, Claude; Renouard, Pierre. Analyticity and Borel summability of the $\phi ^4$ models. I. The dimension $d = 1$. Annales de l'I.H.P. Physique théorique, Tome 59 (1993) no. 2, pp. 141-199. http://archive.numdam.org/item/AIHPA_1993__59_2_141_0/

[1] C. Billionnet and P. Renouard, Analytic Interpolation and Borel Summability of the (λ/N|φN|:4)2 Models, I. Finite Volume Approximation, C.M.P., Vol. 84, 1982, pp. 257-295. | MR 661137

[2] M. Duneau, D. Iagolnitzer and B. Souillard, Strong Cluster Properties for Classical Systems with Finite Range Interactions, C.M.P., Vol. 35, 1974, pp. 307-320. | MR 337230

[3] J.P. Eckmann, J. Magnen and R. Seneor, Decay Properties and Borel Summability for the Schwinger Functions in P (φ)2 Theories, CMP, Vol. 39, 1975, pp. 251-271. | MR 366266

[4] J. Glimm, A. Jaffe and T. Spencer, The Particle Structure of the Weakly Coupled P(φ)2 Model... Part II. The Cluster Expansion, Lecture Notes in Physics, Springer, Vol. 25, 1973, pp. 199-242. | MR 395513

[5] J. Glimm and A. Jaffe, Positivity of the φ43 Hamiltonian, Fortschritte der Physik, Vol. 21, 1973, pp. 327-376. | MR 408581

[6] F. Guerra, L. Rosen and B. Simon, The P(φ)2 Euclidean Quantum Field Theory as Classical Statistical Mechanics, Ann. Math., Vol. 101, 1975, p. 111. | MR 378670

[7] T. Kato, Perturbation Theory for Linear Operators, Springer, 1966. | Zbl 0148.12601

[8] N. Khuri, Stability of Asymptotically Free Φ44, 1984.

[9] J. Magnen and R. Seneor, The Infinite Volume Limit of the φ43 Model, Ann. I.H.P., Vol. 24, 1976, pp. 95-159. | Numdam | MR 406217

[10] E. Nelson, The Free Markov Field, J. Funct. Anal., Vol. 12, 1973, p. 211. | MR 343816 | Zbl 0273.60079

[11] P. Renouard, Analyticité et sommabilité de Borel des fonctions de Schwinger du modèle de Yukawa en dimension d=2, II. La « limite adiabatique », Ann. I.H.P., Vol. 31, 1979, pp. 235-318. | Numdam | MR 571894

[12] B. Simon, Coupling Constant Analyticity for the Anharmonic Oscillator, Ann. of Physics, Vol. 58, 1970, pp. 76-136. | MR 416322

[13] B. Simon, Notes on Infinite Determinants of Hilbert Space Operators, | Zbl 0353.47008

[14] T. Spencer, The Decay of the Bethe-Salpeter Kernel in P(φ)2 Quantum Field Models, CMP, Vol. 44, 1975, pp. 143-164. | MR 389080

[15] T. Spencer, The Lipatov Argument, C.M.P., Vol. 74, 1980, pp. 273-280. | MR 578044

[16] H. Triebel, Theory of Function Spaces, Monographs in Mathematics, Birkhäuser, Vol. 78, 1983. | MR 730762 | Zbl 0546.46027

[17] A. Wightman, Φ4v and Generalized Borel Summability, Canadian Math. Soc. Conference Proceedings, Vol. 9, 1988, pp. 1-13. | MR 973453