The classification of SU(3) modular invariants revisited
Annales de l'I.H.P. Physique théorique, Tome 65 (1996) no. 1, pp. 15-55.
@article{AIHPA_1996__65_1_15_0,
     author = {Gannon, Terry},
     title = {The classification of $SU(3)$ modular invariants revisited},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {15--55},
     publisher = {Gauthier-Villars},
     volume = {65},
     number = {1},
     year = {1996},
     mrnumber = {1407165},
     zbl = {0919.17019},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPA_1996__65_1_15_0/}
}
TY  - JOUR
AU  - Gannon, Terry
TI  - The classification of $SU(3)$ modular invariants revisited
JO  - Annales de l'I.H.P. Physique théorique
PY  - 1996
SP  - 15
EP  - 55
VL  - 65
IS  - 1
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPA_1996__65_1_15_0/
LA  - en
ID  - AIHPA_1996__65_1_15_0
ER  - 
%0 Journal Article
%A Gannon, Terry
%T The classification of $SU(3)$ modular invariants revisited
%J Annales de l'I.H.P. Physique théorique
%D 1996
%P 15-55
%V 65
%N 1
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPA_1996__65_1_15_0/
%G en
%F AIHPA_1996__65_1_15_0
Gannon, Terry. The classification of $SU(3)$ modular invariants revisited. Annales de l'I.H.P. Physique théorique, Tome 65 (1996) no. 1, pp. 15-55. http://archive.numdam.org/item/AIHPA_1996__65_1_15_0/

[1] T. Gannon, The classification of affine SU(3) modular invariant partition functions, Commun. Math. Phys., Vol. 161, 1994, pp. 233-264. | MR | Zbl

[2] G. Moore and N. Seiberg, Naturality in conformal field theory, Nucl. Phys., Vol. B313, 1989, pp. 16-40. | MR

[3] V.G. Kac, Infinite Dimensional Lie Algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. | MR | Zbl

[4] V.G. Kac and D. Peterson, Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. Math., Vol. 53, 1984, pp. 125-264. | MR | Zbl

[5] M. Bauer and C. Itzykson, Modular transformations of SU(N) affine characters and their commutant, Commun. Math. Phys., Vol. 127, 1990, pp. 617-636. | MR | Zbl

[6] Ph. Ruelle, E. Thiran and J. Weyers, Modular invariants for affine Su(3) theories at prime heights, Comm. Math. Phys., Vol. 133, 1990, pp. 305-322. | MR | Zbl

[7] T. Gannon, WZW commutants, lattices, and level-one partition functions, Nucl. Phys., Vol. B396, 1993, pp. 708-736. | MR

[8] Ph. Ruelle, E. Thiran and J. Weyers, Implications of an arithmetical symmetry of the commutant for modular invariants, Nucl. Phys., Vol. B402, 1993, pp. 693-708. | MR | Zbl

[9] Ph. Ruelle, Automorphisms of the affine SU(3) fusion rules, Commun. Math. Phys., Vol. 160, 1994, pp. 475-492. | MR | Zbl

[10] N. Koblitz and D. Rohrlich, Simple factors in the Jacobian of a Fermat curve, Can. J. Math., Vol. XXX, 1978, pp. 1183-1205. | MR | Zbl

[11] Y. Stanev, Classification of the local extensions of the SU(3) chiral current algebra, Vienna preprint ESI-19, 1993. | MR

[12] L. Begin, P. Mathieu and M. Walton, su(3)k fusion coefficients, Mod. Phys. Lett., Vol. A7, 1992, pp. 3255-3265. | MR | Zbl

[13] T. Gannon and M.A. Walton, On the classification of diagonal coset modular invariants, Commun. Math. Phys., Vol. 173, 1995, pp. 175-198. | MR | Zbl

[14] D. Altschuler J. Lacki and Ph. Zaugg, The affine Weyl group and modular invariant partition functions, Phys. Lett., Vol. B205, 1988, pp. 281-284. | MR

[15] D. Bernard, String characters from Kac-Moody automorphisms, Nucl. Phys., Vol. B288, 1987, pp. 628-648. | MR

[16] P. Christe and F. Ravanani, GN ⊗ GN+L conformal field theories and their modular invariant partition functions, Int. J. Mod. Phys., Vol. A4, 1989, pp. 897-920. | Zbl

[17] T. Gannon, Towards a classification of SU(2) ⊕ ... ⊕ SU(2) modular invariant partition functions, J. Math. Phys., Vol. 36, 1995, pp. 675-706. | MR | Zbl

[18] F.R. Gantmacher, The theory of matrices, Vol. II, Chesea Publishing Co., New York, 1964.

[19] A. Coste and T. Gannon, Remarks on Galois symmetry in RCFT, Phys. Lett., Vol. B323, 1994, pp. 316-321.

[20] N. Bourbaki, Groupes et Algèbres de Lie, Chapitre IV-VI, Hermann, Paris, 1968. | MR

[21] T. Gannon and Q. Ho-Kim, The low level modular invariant partition functions or rank 2 algebras, Int. J. Mod. Phys., Vol. A9, 1994, pp. 2667-2686. | MR | Zbl

[22] M. Kreuzer and A.N. Schellekens, Simple currents versus orbifolds with discrete torsion a complete classification, Nucl. Phys., Vol. B411, 1994, pp. 97-121. | MR | Zbl

[23] T. Gannon and Q. Ho-Kim, The rank-four heterotic modular invariant partition functions, Nucl. Phys., Vol. B425, 1994, pp. 319-342. | MR | Zbl

[24] A.N. Schellekens, Meromorphic c = 24 conformal field theories, Commun. Math. Phys., Vol. 153, 1993, pp. 159-185; P. Montague, Orbifold construction and the classification of self-dual c = 24 conformal field theories, (hep-th/9403088). | MR | Zbl

[25] T. Gannon, Symmetries of Kac-Peterson modular matrices of affine algebras, Invent. Math., Vol. 122, 1995, pp. 341-357. | MR | Zbl

[26] T. Gannon, Ph. Ruelle and M.A. Walton, Automorphism modular invariants of current algebras, (hep-th/9503141).

[27] J. Fuchs, A.N. Schellekens and C. Schweigert, Galois modular invariants of WZW models, Nucl. Phys., Vol. B437, 1995, pp. 667. | MR | Zbl

[28] A. Cappelli, C. Itzykson and J.-B. Zuber, The A-D-E classification of A(1)1 and minimal conformal field theories, Commun. Math. Phys., Vol. 113, 1987, pp. 1-26. | MR | Zbl

[29] T. Gannon, Kac-Peterson, Perron-Frobenius, and the Classification of Conformal Field Theories (q-alg/9510026).