@article{AIHPA_1996__65_1_15_0, author = {Gannon, Terry}, title = {The classification of $SU(3)$ modular invariants revisited}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {15--55}, publisher = {Gauthier-Villars}, volume = {65}, number = {1}, year = {1996}, mrnumber = {1407165}, zbl = {0919.17019}, language = {en}, url = {http://archive.numdam.org/item/AIHPA_1996__65_1_15_0/} }
Gannon, Terry. The classification of $SU(3)$ modular invariants revisited. Annales de l'I.H.P. Physique théorique, Volume 65 (1996) no. 1, pp. 15-55. http://archive.numdam.org/item/AIHPA_1996__65_1_15_0/
[1] The classification of affine SU(3) modular invariant partition functions, Commun. Math. Phys., Vol. 161, 1994, pp. 233-264. | MR | Zbl
,[2] Naturality in conformal field theory, Nucl. Phys., Vol. B313, 1989, pp. 16-40. | MR
and ,[3] Infinite Dimensional Lie Algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. | MR | Zbl
,[4] Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. Math., Vol. 53, 1984, pp. 125-264. | MR | Zbl
and ,[5] Modular transformations of SU(N) affine characters and their commutant, Commun. Math. Phys., Vol. 127, 1990, pp. 617-636. | MR | Zbl
and ,[6] Modular invariants for affine Su(3) theories at prime heights, Comm. Math. Phys., Vol. 133, 1990, pp. 305-322. | MR | Zbl
, and ,[7] WZW commutants, lattices, and level-one partition functions, Nucl. Phys., Vol. B396, 1993, pp. 708-736. | MR
,[8] Implications of an arithmetical symmetry of the commutant for modular invariants, Nucl. Phys., Vol. B402, 1993, pp. 693-708. | MR | Zbl
, and ,[9] Automorphisms of the affine SU(3) fusion rules, Commun. Math. Phys., Vol. 160, 1994, pp. 475-492. | MR | Zbl
,[10] Simple factors in the Jacobian of a Fermat curve, Can. J. Math., Vol. XXX, 1978, pp. 1183-1205. | MR | Zbl
and ,[11] Classification of the local extensions of the SU(3) chiral current algebra, Vienna preprint ESI-19, 1993. | MR
,[12] su(3)k fusion coefficients, Mod. Phys. Lett., Vol. A7, 1992, pp. 3255-3265. | MR | Zbl
, and ,[13] On the classification of diagonal coset modular invariants, Commun. Math. Phys., Vol. 173, 1995, pp. 175-198. | MR | Zbl
and ,[14] The affine Weyl group and modular invariant partition functions, Phys. Lett., Vol. B205, 1988, pp. 281-284. | MR
and ,[15] String characters from Kac-Moody automorphisms, Nucl. Phys., Vol. B288, 1987, pp. 628-648. | MR
,[16] GN ⊗ GN+L conformal field theories and their modular invariant partition functions, Int. J. Mod. Phys., Vol. A4, 1989, pp. 897-920. | Zbl
and ,[17] Towards a classification of SU(2) ⊕ ... ⊕ SU(2) modular invariant partition functions, J. Math. Phys., Vol. 36, 1995, pp. 675-706. | MR | Zbl
,[18] The theory of matrices, Vol. II, Chesea Publishing Co., New York, 1964.
,[19] Remarks on Galois symmetry in RCFT, Phys. Lett., Vol. B323, 1994, pp. 316-321.
and ,[20] Groupes et Algèbres de Lie, Chapitre IV-VI, Hermann, Paris, 1968. | MR
,[21] The low level modular invariant partition functions or rank 2 algebras, Int. J. Mod. Phys., Vol. A9, 1994, pp. 2667-2686. | MR | Zbl
and ,[22] Simple currents versus orbifolds with discrete torsion a complete classification, Nucl. Phys., Vol. B411, 1994, pp. 97-121. | MR | Zbl
and ,[23] The rank-four heterotic modular invariant partition functions, Nucl. Phys., Vol. B425, 1994, pp. 319-342. | MR | Zbl
and ,[24] Meromorphic c = 24 conformal field theories, Commun. Math. Phys., Vol. 153, 1993, pp. 159-185; , Orbifold construction and the classification of self-dual c = 24 conformal field theories, (hep-th/9403088). | MR | Zbl
,[25] Symmetries of Kac-Peterson modular matrices of affine algebras, Invent. Math., Vol. 122, 1995, pp. 341-357. | MR | Zbl
,[26] Automorphism modular invariants of current algebras, (hep-th/9503141).
, and ,[27] Galois modular invariants of WZW models, Nucl. Phys., Vol. B437, 1995, pp. 667. | MR | Zbl
, and ,[28] The A-D-E classification of A(1)1 and minimal conformal field theories, Commun. Math. Phys., Vol. 113, 1987, pp. 1-26. | MR | Zbl
, and ,[29] Kac-Peterson, Perron-Frobenius, and the Classification of Conformal Field Theories (q-alg/9510026).
,