Gauge symmetries of an extended phase space for Yang-Mills and Dirac fields
Annales de l'I.H.P. Physique théorique, Tome 66 (1997) no. 1, pp. 109-136.
@article{AIHPA_1997__66_1_109_0,
     author = {Schwarz, G\"unter and \'Sniatycki, J\k{e}drzej},
     title = {Gauge symmetries of an extended phase space for {Yang-Mills} and {Dirac} fields},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {109--136},
     publisher = {Gauthier-Villars},
     volume = {66},
     number = {1},
     year = {1997},
     mrnumber = {1434116},
     zbl = {0889.58089},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPA_1997__66_1_109_0/}
}
TY  - JOUR
AU  - Schwarz, Günter
AU  - Śniatycki, Jędrzej
TI  - Gauge symmetries of an extended phase space for Yang-Mills and Dirac fields
JO  - Annales de l'I.H.P. Physique théorique
PY  - 1997
SP  - 109
EP  - 136
VL  - 66
IS  - 1
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPA_1997__66_1_109_0/
LA  - en
ID  - AIHPA_1997__66_1_109_0
ER  - 
%0 Journal Article
%A Schwarz, Günter
%A Śniatycki, Jędrzej
%T Gauge symmetries of an extended phase space for Yang-Mills and Dirac fields
%J Annales de l'I.H.P. Physique théorique
%D 1997
%P 109-136
%V 66
%N 1
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPA_1997__66_1_109_0/
%G en
%F AIHPA_1997__66_1_109_0
Schwarz, Günter; Śniatycki, Jędrzej. Gauge symmetries of an extended phase space for Yang-Mills and Dirac fields. Annales de l'I.H.P. Physique théorique, Tome 66 (1997) no. 1, pp. 109-136. http://archive.numdam.org/item/AIHPA_1997__66_1_109_0/

[1] I. Segal, "The Cauchy problem for the Yang-Mills equations", J. Funct. Anal., Vol. 33, 1979, pp. 175-194. | MR | Zbl

[2] J. Ginebre and G. Velo, "The Cauchy problem for coupled Yang-Mills and scalar fields in temporal gauge", Comm. Math. Phys., Vol. 82, 1981, pp. 1-28. | MR | Zbl

[3] D.M. Eardley and V. Moncrief, "The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space", Comm. Math. Phys. , Vol. 83, 1982, pp. 171-191 and pp. 193-212. | Zbl

[4] Y. Choquet-Bruhat and D. Christodoulu, "Exitence de solutions globales deséquations classiques des théories de jauge", C. R. Acad. Sc. Paris, Vol. 293, sér.1, 1981, pp. 181-195. | Zbl

[5] S. Klainerman and M. Machedon, "Finite energy solutions of the Yang-Mills equations in IR3+1", preprint, Department of Mathematics, Princeton University.

[6] R.A. Adams, Sobolev Spaces, Academic Press, Orlando, Florida, 1975. | MR | Zbl

[7] H. Aikawa, "On weighted Beppo Levi functions. Integral representation and behaviour at infinity", Analysis, Vol. 9, 1989, pp. 323-346. | MR | Zbl

[8] J. Deny and J.L. Lions, "Les éspaces du type de Beppo Levi", Ann. Inst. Fourier, Vol. 5, 1955, pp. 305-370. | Numdam | MR | Zbl

[9] R. Mcowen, "The behavior of the Laplacian on weighted Sobolev spaces", Comm. Pure Appl. Math., Vol. XXXII, 1979, pp. 783-795. | MR | Zbl

[10] G. Schwarz, Hodge Decomposition - A Method for Solving Boundary Value Problems, Lecture Notes in Mathematics 1607, Springer-Verlag, Heidelberg, 1995. | MR | Zbl

[11] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, New York, 1983. | MR | Zbl

[12] J. Weidmann, Linear Operators in Hilbert Spaces, Springer Verlag, Berlin, 1980. | MR | Zbl

[13] K. Yosida, Functional Analysis, Springer Verlag, Berlin, 1971. | Zbl

[14] G. Schwarz and J. Śniatycki, "Yang-Mills and Dirac fields in a bag, existence and uniqueness theorems", Comm. Math. Phys., Vol. 168, 1995, pp. 441-453. | MR | Zbl

[15] J. Śniatycki, G. Schwarz and L. Bates, "Yang-Mills and Dirac fields in a bag, constraints and reduction", Comm. Math. Phys., Vol. 176, 1996, pp. 95-117. | MR | Zbl

[16] I. Segal, "Non-linear semigroups", Ann. Math., Vol. 78, 1963, pp. 339-364. | MR | Zbl

[17] G. Schwarz and J. Śniatycki, "The Hamiltonian evolution of Yang-Mills and Dirac fields", Acta Phys. Pol. B 27, No. 4, 1-12 (1996).

[18] W. Von Wahl, "Analytische Abbildungen und semilineare Differentialgleichungen in Banachräumen", Nachr. Akad. Wiss. Göttingen, II, math.-phys. Klasse, 1979, pp. 1-48. | MR | Zbl

[19] J. Eichhorn, "Gauge theory of open manifolds of bounded geometry", Ann. Global Anal. Geom., Vol. 11, 1993, pp. 253-300. | MR

[20] A. Weil, Sur les espaces a structures uniformes, Act. Sci. Ind., 551, Hermann, Paris, 1938. | Zbl

[21] S. Lang, Differential and Riemannian Manifolds, Springer Verlag, New York, 1995. | MR | Zbl

[22] G. Schwarz and J. Śniatycki, "The constraint set of the Yang-Mills-Dirac theory in the Minkowski space", in preparation.

[23] J. Śniatycki and G. Schwarz [94], "An invariance argument for confinement", Rep. Math. Phys., 34, 1994, pp. 311-324. | MR | Zbl

[24] C. Amrouche, V. Girault and J. Giroire, "Weighted Sobolev spaces for Laplace's equation in IRn", J. Math. Pures Appl., Vol. 73, 1994, pp. 579-606. | MR | Zbl