Probability and quantum symmetries. I. The theorem of Noether in Schrödinger's euclidean quantum mechanics
Annales de l'I.H.P. Physique théorique, Volume 67 (1997) no. 3, p. 297-338
@article{AIHPA_1997__67_3_297_0,
     author = {Thieullen, M. and Zambrini, Jean-Claude},
     title = {Probability and quantum symmetries. I. The theorem of Noether in Schr\"odinger's euclidean quantum mechanics},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     publisher = {Gauthier-Villars},
     volume = {67},
     number = {3},
     year = {1997},
     pages = {297-338},
     zbl = {0897.60062},
     mrnumber = {1472821},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1997__67_3_297_0}
}
Thieullen, M.; Zambrini, J. C. Probability and quantum symmetries. I. The theorem of Noether in Schrödinger's euclidean quantum mechanics. Annales de l'I.H.P. Physique théorique, Volume 67 (1997) no. 3, pp. 297-338. http://www.numdam.org/item/AIHPA_1997__67_3_297_0/

[1] V. Arnold, Méthodes mathématiques de la mécanique classique, Ed. Mir, Moscou, 1976. | MR 474391 | Zbl 0385.70001

[2] V.M. Alekseev, V.M. Tikhomirov and S.V. Fomin, Commande Optimale, Ed. Mir, Moscou, 1982. | MR 728225

[3] R.P. Feynman and A.R. Hibbs, Quantum Mechanics and path integrals, Mc Graw - Hill, N. Y., 1965. | Zbl 0176.54902

[4] B. Simon, Functional Integration and Quantum Physics, Acad. Press, N. Y., 1979. | MR 544188 | Zbl 0434.28013

[5] N. Ikeda and S. Watanabe, Stochastic Differential equations and Diffusion Processes, 2nd ed., North Holland, Amsterdam, 1989. | MR 1011252 | Zbl 0684.60040

[6] M. Kac, On some connections between probability theory and differential and integral equations, Proc. of the 2nd, Berkeley Symp. on Prob. and Statistics, J. Newman Ed., Univ. of California Press, Berkeley, 1951. | MR 45333 | Zbl 0045.07002

[7] R.H. Cameron, J. Math. Physics, Vol. 39, 1960, p. 126. | Zbl 0096.06901

[8] E. Cartan, Leçons sur les invariants intégraux, Hermann, Paris, 1922. | MR 355764

[9] a) J.C. Zambrini, J. Math. Physics, Vol. 27, 1986, p. 2307. b) S. Albeverio, K. Yasue and J.C. Zambrini, Ann. Inst. Henri Poincaré, Physique Théorique, Vol. 49, 1989, p. 259. | MR 854761

[10] E. Nelson, Quantum fluctuations, Princeton Series in Physics, P. U. Press, 1985. | MR 783254 | Zbl 0563.60001

[11] J.C. Zambrini, An alternative starting point for Euclidean field theory: Euclidean Quantum Mechanics, IXth International Congress of Mathematical Physics, Swansea (U.K.), Adam Hilger, N. Y., 1989, p. 260. | MR 1033772

[12] A.B. Cruzeiro and J.C. Zambrini, Malliavin Calculus and Euclidean Quantum Mechanics. I. Functional Calculus, J. of Funct. Anal., Vol. 96, 1991, 1, p. 62. | MR 1093507 | Zbl 0733.35093

[13] P. Ramond, Field Theory. A modern primer, Benjamin Cummings Publ., Reading, Mass., 1981. | MR 602697

[14] a) M.G. Crandall and P.L. Lions, Trans. Amer. M. S., No. 277, 1984, p. 1. b) W.H. Fleming and H.M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer, 1993. | MR 690039

[15] S. Weinberg, Annals of Physics, Vol. 194, 1989, p. 336. | MR 1015798

[16] T. Kolsrud and J.C. Zambrini, The mathematical framework of Euclidean Quantum Mechanics. An outline in "Stochastic Analysis and Applications", Ed. A. B. Cruzeiro and J. C. Zambrini, No. 26, 1991, Birkhäuser, Boston. | MR 1168072 | Zbl 0784.60106

[17] A. Galindo and P. Pascual, Quantum Mechanics I, Springer-Verlag, 1989. | Zbl 0824.00008

[18] E. Nelson, Dynamical Theories of Brownian Motion, Princeton Univ. Press, N. J., 1967. | MR 214150 | Zbl 0165.58502

[19] a) I.M. Gelfand and S.V. Fomin, Calculus of Variations, Prentice-Hall, N.J., 1963. b) W. Dittrich and M. Reuter, Classical and Quantum Dynamics, Springer-Verlag, 1994. | MR 160139

[20] a) W. Miller Jr, Symmetry groups and their applications, Academic Press, N. Y., 1972. b) P.J. Olver, Applications of Lie groups to differential equations, Springer-Verlag, N. Y., 1986. | MR 338286 | Zbl 0306.22001

[21] J. Doob, Bull. Soc. Math. de France, Vol. 85, 1957, p. 431. | Numdam | MR 109961 | Zbl 0097.34004

[22] a) B. Djehiche, J. of Math. Phys., Vol. 33, 1992, No. 9, p. 3050. b) B. Djehiche, Potential Analysis, Vol. 2, p. 349, 1993. | Zbl 0762.60100

[23] B. Djehiche and T. Kolsrud, Canonical transformations for diffusions, C.R. Acad. Sc. Paris, T. 321, Série I, 1995, pp. 339-344. | MR 1346139 | Zbl 0836.60084

[24] P.L. Lions, Act. Math., Vol. 161, 1988, p. 243. | Zbl 0757.93082

[25] M. Thieullen and J.C. Zambrini, Symmetries in the Stochastic Calculus of Variations, to appear in Prob. Theory Related Fields. | MR 1440139 | Zbl 0868.60064

[26] a) E. Schrödinger, Ann. Inst. H. Poincaré, Vol. 2, 1932, p. 269. b) S. Bernstein, Sur les liaisons entre les grandeurs aléatoires, Mathematikerkongr, Zurich, Band 1, 1932. c) B. Jamison and Z. Wahrscheinlich, Gebiete, Vol. 30, 1974, p. 65. | MR 1508000

[27] M. Thieullen, Prob. Theory Related Fields, No. 97, 1993, p. 231. | MR 1240725

[28] P. Malliavin, Stochastic calculus of variations and hypo-elliptic operators, Proc. Int. Symp. SDE Kyoto, 1976, 1978, Kinokuniya, Tokyo. | Zbl 0411.60060

[29] E.B. Dynkin, Markov processes, Springer-Verlag, Berlin, 1965.

[30] A.B. Cruzeiro and J.C. Zambrini, Malliavin Calculus and Euclidean Quantum Mechanics, II, J. of Funct. Analysis, Vol. 130, No. 2, 1995, p. 450. | MR 1335388 | Zbl 0821.60060

[31] J.C. Zambrini, From Quantum Physics to Probability Theory and back, in "Chaos - the interplay between Stochastic and Deterministic behaviour", Springer lecture Notes in Physics, No. 457, GARBACZEWSKI et al., eds., Springer, Berlin, 1995. | MR 1452626 | Zbl 0839.60090

[32] J.C. Zambrini, Calculus of Variations and Quantum Probability in Lect. Notes in Control and Info., 1988, No. 121, p. 173, N. Y. | MR 1231121

[33] A.J. Krener, Reciprocal diffusions in flat space, Prob. Theory Related fields, No. 107, 1997, p. 243. | MR 1431221 | Zbl 0868.60049

[34] B.C. Levy and A.J. Krener, Stochastic mechanics of reciprocal diffusions, J. Math. Physics, Vol. 37, 1996, p. 769. | MR 1371041 | Zbl 0869.60090

[35] N.V. Krylov, Nonlinear elliptic and parabolic equations of the second order, Reidel, Dodrecht, 1987.

[36] S. Albeverio, J. Rezende and J.C. Zambrini, Probability and quantum symmetries, II. The Theorem of Noether in quantum mechanics.

[37] T. Misawa, Conserved quantities and symmetry for stochastic dynamical systems., Phys. Letters A, 1994, No. 195, p. 185. | MR 1306235 | Zbl 0941.34512

[38] P. Malliavin, Stochastic analysis, Grund. der Math. Wiss., Vol. 313, Springer, 1997. | Zbl 0878.60001