Exchanging the order of taking suprema and countable intersections of σ-algebras
Annales de l'I.H.P. Probabilités et statistiques, Tome 19 (1983) no. 1, pp. 91-100.
@article{AIHPB_1983__19_1_91_0,
     author = {Weizs\"acker, Heinrich V.},
     title = {Exchanging the order of taking suprema and countable intersections of $\sigma $-algebras},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {91--100},
     publisher = {Gauthier-Villars},
     volume = {19},
     number = {1},
     year = {1983},
     zbl = {0509.60002},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPB_1983__19_1_91_0/}
}
TY  - JOUR
AU  - Weizsäcker, Heinrich V.
TI  - Exchanging the order of taking suprema and countable intersections of $\sigma $-algebras
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 1983
SP  - 91
EP  - 100
VL  - 19
IS  - 1
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPB_1983__19_1_91_0/
LA  - en
ID  - AIHPB_1983__19_1_91_0
ER  - 
%0 Journal Article
%A Weizsäcker, Heinrich V.
%T Exchanging the order of taking suprema and countable intersections of $\sigma $-algebras
%J Annales de l'I.H.P. Probabilités et statistiques
%D 1983
%P 91-100
%V 19
%N 1
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPB_1983__19_1_91_0/
%G en
%F AIHPB_1983__19_1_91_0
Weizsäcker, Heinrich V. Exchanging the order of taking suprema and countable intersections of $\sigma $-algebras. Annales de l'I.H.P. Probabilités et statistiques, Tome 19 (1983) no. 1, pp. 91-100. http://archive.numdam.org/item/AIHPB_1983__19_1_91_0/

[1] S. Albeverio and R. Høegh-Krohn, The global Markov property for euclidean and lattice fields. Physics letters, t. 84 B, 1979, p. 89-90. | MR

[2] H. Föllmer, On the global Markov property, L. Streit (ed.): Quantum fields-algebras, -processes Springer: Wien, 1980. | MR | Zbl

[3] S. Goldstein, Remarks on the Global Markov Property. Comm. math. Phys., t. 74, 1980, p. 223-234. | MR | Zbl

[4] K. Ito and M. Nisio, On stationary solutions of a stochastic differential equation. J. Math., Kyoto Univ., t. 4, 1964, p. 1-75. | MR | Zbl

[5] G. Kallianpur and V. Mandrekhar, The Markov property for generalized Gaussian random fields. Ann. Inst. Fourier (Grenoble), t. 24, 1974, p. 143-167. | Numdam | MR | Zbl

[6] R. Kotecky and D. Preiss, Markoff property of generalized random fields. 7th Winter School on Abstract Analysis. Math. Inst. of the Cz. Acad. of Sciences, Praha, 1979.

[7] H. Künsch, Gaussian Markov random fields. J. of the Fac. of Sciences. Univ. of Tokyo, Sec. IA, t. 26, 1979, p. 53-73. | MR | Zbl

[8] D. Maharam, An example on tail fields. In: Measure Theory, Applications to Stochastic Analysis (G. Kallianpur and D. Kölzow, eds.). Lecture Notes in Math., 695, Springer, Berlin, etc., 1978, p. 215. | MR | Zbl

[9] P.A. Meyer et M. Yor, Sur la théorie de la prédiction, et le problème de décomposition des tribus F0t+. Sém. de Probabilités X. Lecture Notes in Math., 511, Springer, Berlin, etc., 1976. | Numdam | Zbl

[10] E. Nelson, Probability theory and Euclidean field theory in G. Velo, A. Wightman (eds.). Lecture Notes in Physics, 25, Springer, Berlin, etc., 1973. | MR | Zbl

[11] D. Ornstein and B. Weiss, Every transformation is bilaterally deterministic. Isr. J. of Math., t. 21, 1975, p. 154-158. | MR | Zbl

[12] M. Rosenblatt, Stationary processes as shifts of functions of independent random variables. J. Math. Mech., t. 8, 1959, p. 665-681. | MR | Zbl

[13] B.S. Tsirel'Son, An example of a stochastic differential equation having no strong solution. Theory of probability and its applications, t. 20, 1975, p. 416-418. | Zbl

[14] V. H. Weizsäcker, A simple example concerning the global Markov Property of lattice random fields. 8th Winter School on Abstract Analysis. Math. Inst. of the Cz. Acad of Sciences, Praha, 1980.

[15] G. Winkler, The number of phases of inhomogeneous Markov fields with finite state space on N and Z and their behaviour at infinity. To appear in Math. Nachr. | MR | Zbl