@article{AIHPB_1983__19_1_91_0, author = {Weizs\"acker, Heinrich V.}, title = {Exchanging the order of taking suprema and countable intersections of $\sigma $-algebras}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {91--100}, publisher = {Gauthier-Villars}, volume = {19}, number = {1}, year = {1983}, zbl = {0509.60002}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_1983__19_1_91_0/} }
TY - JOUR AU - Weizsäcker, Heinrich V. TI - Exchanging the order of taking suprema and countable intersections of $\sigma $-algebras JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1983 SP - 91 EP - 100 VL - 19 IS - 1 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPB_1983__19_1_91_0/ LA - en ID - AIHPB_1983__19_1_91_0 ER -
%0 Journal Article %A Weizsäcker, Heinrich V. %T Exchanging the order of taking suprema and countable intersections of $\sigma $-algebras %J Annales de l'I.H.P. Probabilités et statistiques %D 1983 %P 91-100 %V 19 %N 1 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPB_1983__19_1_91_0/ %G en %F AIHPB_1983__19_1_91_0
Weizsäcker, Heinrich V. Exchanging the order of taking suprema and countable intersections of $\sigma $-algebras. Annales de l'I.H.P. Probabilités et statistiques, Tome 19 (1983) no. 1, pp. 91-100. http://archive.numdam.org/item/AIHPB_1983__19_1_91_0/
[1] The global Markov property for euclidean and lattice fields. Physics letters, t. 84 B, 1979, p. 89-90. | MR
and ,[2] On the global Markov property, L. Streit (ed.): Quantum fields-algebras, -processes Springer: Wien, 1980. | MR | Zbl
,[3] Remarks on the Global Markov Property. Comm. math. Phys., t. 74, 1980, p. 223-234. | MR | Zbl
,[4] On stationary solutions of a stochastic differential equation. J. Math., Kyoto Univ., t. 4, 1964, p. 1-75. | MR | Zbl
and ,[5] The Markov property for generalized Gaussian random fields. Ann. Inst. Fourier (Grenoble), t. 24, 1974, p. 143-167. | Numdam | MR | Zbl
and ,[6] Markoff property of generalized random fields. 7th Winter School on Abstract Analysis. Math. Inst. of the Cz. Acad. of Sciences, Praha, 1979.
and ,[7] Gaussian Markov random fields. J. of the Fac. of Sciences. Univ. of Tokyo, Sec. IA, t. 26, 1979, p. 53-73. | MR | Zbl
,[8] An example on tail fields. In: Measure Theory, Applications to Stochastic Analysis (G. Kallianpur and D. Kölzow, eds.). Lecture Notes in Math., 695, Springer, Berlin, etc., 1978, p. 215. | MR | Zbl
,[9] Sur la théorie de la prédiction, et le problème de décomposition des tribus F0t+. Sém. de Probabilités X. Lecture Notes in Math., 511, Springer, Berlin, etc., 1976. | Numdam | Zbl
et ,[10] Probability theory and Euclidean field theory in G. Velo, A. Wightman (eds.). Lecture Notes in Physics, 25, Springer, Berlin, etc., 1973. | MR | Zbl
,[11] Every transformation is bilaterally deterministic. Isr. J. of Math., t. 21, 1975, p. 154-158. | MR | Zbl
and ,[12] Stationary processes as shifts of functions of independent random variables. J. Math. Mech., t. 8, 1959, p. 665-681. | MR | Zbl
,[13] An example of a stochastic differential equation having no strong solution. Theory of probability and its applications, t. 20, 1975, p. 416-418. | Zbl
,[14] A simple example concerning the global Markov Property of lattice random fields. 8th Winter School on Abstract Analysis. Math. Inst. of the Cz. Acad of Sciences, Praha, 1980.
,[15] The number of phases of inhomogeneous Markov fields with finite state space on N and Z and their behaviour at infinity. To appear in Math. Nachr. | MR | Zbl
,