@article{AIHPB_1987__23_1_91_0, author = {Chen, Louis H. Y.}, title = {Characterization of probability distributions by {Poincar\'e-type} inequalities}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {91--110}, publisher = {Gauthier-Villars}, volume = {23}, number = {1}, year = {1987}, mrnumber = {877386}, zbl = {0612.60013}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_1987__23_1_91_0/} }
TY - JOUR AU - Chen, Louis H. Y. TI - Characterization of probability distributions by Poincaré-type inequalities JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1987 SP - 91 EP - 110 VL - 23 IS - 1 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPB_1987__23_1_91_0/ LA - en ID - AIHPB_1987__23_1_91_0 ER -
%0 Journal Article %A Chen, Louis H. Y. %T Characterization of probability distributions by Poincaré-type inequalities %J Annales de l'I.H.P. Probabilités et statistiques %D 1987 %P 91-110 %V 23 %N 1 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPB_1987__23_1_91_0/ %G en %F AIHPB_1987__23_1_91_0
Chen, Louis H. Y. Characterization of probability distributions by Poincaré-type inequalities. Annales de l'I.H.P. Probabilités et statistiques, Volume 23 (1987) no. 1, pp. 91-110. http://archive.numdam.org/item/AIHPB_1987__23_1_91_0/
[1] On an inequality and a related characterization of the normal distribution, Theory Prob. Appl., t. 28, 1984, p. 219-228. | Zbl
and ,[2] An inequality for the multivariate normal distribution, J. Multivariate Anal., t. 12, 1982, p. 306-315. | MR | Zbl
,[3] Poincaré-type inequalities via stochastic integrals, Z. Wahrscheinlichkeitstheorie verw. Gebiete, t. 69, 1985, p. 251-277. | MR | Zbl
,[4] A note on an inequality involving the normal distribution, Ann. Probab., t. 9, 1981, p. 533-535. | MR | Zbl
,[5] Can one hear the shape of a drum? Amer. Math. Monthly, t. 73, 1966, p. 1-23. | MR | Zbl
,[6] A bound for the error in the normal approximation to the distribution of a sum of dependent random variables, Proc. Sixth Berkeley Sympos. Math. Statist. Probab., t. 2, 1972, p. 583-602. | MR | Zbl
,[7] Reflection groups and the eigenvalue problems of vibrating membranes with mixed boundary conditions, Tôhoku Math. Journ., t. 36, 1984, p. 175-183. | MR | Zbl
,