@article{AIHPB_1987__23_S2_245_0, author = {Carlen, E. A. and Kusuoka, S. and Stroock, D. W.}, title = {Upper {Bounds} for symmetric {Markov} transition functions}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {245--287}, publisher = {Gauthier-Villars}, volume = {23}, number = {S2}, year = {1987}, mrnumber = {898496}, zbl = {0634.60066}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_1987__23_S2_245_0/} }
TY - JOUR AU - Carlen, E. A. AU - Kusuoka, S. AU - Stroock, D. W. TI - Upper Bounds for symmetric Markov transition functions JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1987 SP - 245 EP - 287 VL - 23 IS - S2 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPB_1987__23_S2_245_0/ LA - en ID - AIHPB_1987__23_S2_245_0 ER -
%0 Journal Article %A Carlen, E. A. %A Kusuoka, S. %A Stroock, D. W. %T Upper Bounds for symmetric Markov transition functions %J Annales de l'I.H.P. Probabilités et statistiques %D 1987 %P 245-287 %V 23 %N S2 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPB_1987__23_S2_245_0/ %G en %F AIHPB_1987__23_S2_245_0
Carlen, E. A.; Kusuoka, S.; Stroock, D. W. Upper Bounds for symmetric Markov transition functions. Annales de l'I.H.P. Probabilités et statistiques, Volume 23 (1987) no. S2, pp. 245-287. http://archive.numdam.org/item/AIHPB_1987__23_S2_245_0/
[B-E] Diffusions Hypercontractives, pp. 177-207 in Sem. de Probabilities XIX; Lecture Notes in Mathematics, # 1123, J. AZEMA and M. YOR Eds., Springer-Verlag, New York, 1985. | Numdam | MR | Zbl
and ,[D] Explicit Constants for the Gaussian Upper Bounds on Heat Kernels, 1985 preprint (to appear).
,[D-M] Probabilities and Potential B, North Holland, Amsterdam, 1982. | MR | Zbl
and ,[F-S] A New Proof of Moser's Parabolic Harnack Inequality Via the Old Ideas of Nash, Arch. Ratl. Mech. and Anal., vol. 96#4, pp. 327-338 ( 1986). | MR | Zbl
and ,[F] Dirichlet Forms and Markov Processes, North Holland, Amsterdam, 1980. | MR | Zbl
,[K-S] Long time estimates for the heat kernel assiciated will a uniformly subelliptic symmetric second order operator, to appear in Ann. Math. | MR | Zbl
and ,[N] Continuity of Solutions of Parabolic and Elliptic Equations, Amer. J. Math., Vol. 80, 1958, pp. 931-954. | MR | Zbl
,[S] Construction of Nonlinear Local Quantum Processes: I, Ann. Math., Vol. 92, 1970, pp. 462-481. | MR | Zbl
,[St] Applications of Fefferman-Stein Type Interpolation to Probability and Analysis, Comm. Pure Appl. Math., Vol. XXVI, 1973, pp. 477-496. | MR | Zbl
,[L. D.] An Introduction to the Theory of Large Deviations, Springer-Verlag, New York, 1984. | MR | Zbl
,[V] On the Behavior of the Fundamental Solution of the Heat Equation with Variable Coefficients, C.A.M.S. 20 # 2, pp. 431-455, 1967. | MR | Zbl
,[V-1] Isoperimetric Inequalities and Markov Chains, J. Func. Anal., Vol. 63, 1985, pp. 215-239. | MR | Zbl
,[V-2] Hardy-Littlewood Theory for Semigroups, J. Func. Anal., Vol. 63, 1985, pp. 240-260. | MR | Zbl
,