The functional central limit theorem for strongly mixing processes
Annales de l'I.H.P. Probabilités et statistiques, Volume 30 (1994) no. 1, p. 63-82
@article{AIHPB_1994__30_1_63_0,
     author = {Doukhan, Paul and Massart, Pascal and Rio, Emmanuel},
     title = {The functional central limit theorem for strongly mixing processes},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Gauthier-Villars},
     volume = {30},
     number = {1},
     year = {1994},
     pages = {63-82},
     zbl = {0790.60037},
     mrnumber = {1262892},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_1994__30_1_63_0}
}
Doukhan, Paul; Massart, Pascal; Rio, Emmanuel. The functional central limit theorem for strongly mixing processes. Annales de l'I.H.P. Probabilités et statistiques, Volume 30 (1994) no. 1, pp. 63-82. http://www.numdam.org/item/AIHPB_1994__30_1_63_0/

P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968. | MR 233396 | Zbl 0172.21201

R. Bradley, Basic Properties of Strong Mixing Conditions, Dependence in Probability and Statistics. A Survey of Recent Results, Oberwolfach, 1985, E. EBERLEIN and M. S. TAQQU Ed., Birkhäuser, 1986. | MR 899990 | Zbl 0603.60034

A. Bulinskii and P. Doukhan, Inégalités de mélange fort utilisant des normes d'Orlicz, C. R. Acad. Sci. Paris, Série I, Vol. 305, 1987, pp. 827-830. | MR 923208 | Zbl 0659.60009

Y.A. Davydov, Convergence of Distributions Generated by Stationary Stochastic Processes, Theor. Probab. Appl., Vol. 13, 1968, pp. 691-696. | Zbl 0181.44101

Y.A. Davydov, Mixing Conditions for Markov Chains, Theor. Probab. Appl., Vol. 18, 1973, pp. 312-328. | MR 321183 | Zbl 0297.60031

A. Dellacherie and P.A. Meyer, Probabilité et potentiel, Masson, Paris, 1975.

P. Doukhan, Mixing: Properties and Examples, Preprint, Université de Paris-Sud, 91-60, 1991. | MR 1312160

W. Feller, An Introduction to probability Theory and its Applications, Wiley, New York, 1950. | MR 38583 | Zbl 0039.13201

M.I. Gordin, The Central Limit Theorem for Stationary Processes, Soviet Math. Dokl., Vol. 10, 1969, pp. 1174-1176. | MR 251785 | Zbl 0212.50005

P. Hall and C.C. Heyde, Martingal Limit Theory and its Application, North-Holland, New York, 1980. | MR 624435

N. Herrndorf, A Functional Central Limit Theorem for Strongly Mixing Sequences of Random Variables, Z. Wahr. Verv. Gebiete, Vol. 69, 1985, pp. 541-550. | MR 791910 | Zbl 0558.60032

I. A. Ibragimov, Some Limit Theorems for Stationary Processes, Theor. Probab. Appl., Vol. 7, 1962, pp. 349-382. | MR 148125 | Zbl 0119.14204

IBragimov and Y.V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff, Amsterdam, 1971. | MR 322926 | Zbl 0219.60027

H. Oodaira and K.I. Yoshihara, Functional Central Limit Theorems for strictly Stationary Processes Satisfying the Strong Mixing Condition, Kodai Math. Sem. Rep., Vol. 24, 1972, pp. 259-269. | MR 317380 | Zbl 0245.60006

M. Peligrad, Recent Advances in the Central Limit Theorem and its Weak Invariance Principles for Mixing Sequences of Random variables, Dependence in Probability and Statistics. A Survey of Recent Results, Oberwolfach, 1985, E. EBERLEIN and M. S. TAQQU Eds., Birkhäuser, 1986. | MR 899991 | Zbl 0603.60022

E. Rio, Covariance Inequalities for Strongly Mixing Processes, Preprint, Université de Paris- Sud, 1992.

M. Rosenblatt, A Central Limit Theorem and a Strong Mixing Condition, Proc. Nat. Acad. Sci. U.S.A., Vol. 42, 1956, pp. 43-47. | MR 74711 | Zbl 0070.13804

Y.A. Rozanov and V.A. Volkonskii, Some Limit Theorems for Random Functions I, Theory Probab. Appl., Vol. 4, 1959, pp. 178-197. | MR 121856 | Zbl 0092.33502

V. Strassen, A Converse to the Law of the Iterated Logarithm, Z. Wahr. Verv. Gebiete, Vol. 4, 1966, pp. 265-268. | MR 200965 | Zbl 0141.16501