@article{AIHPB_1996__32_6_725_0, author = {Cramer, M. and R\"uschendorf, L.}, title = {Convergence of a branching type recursion}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {725--741}, publisher = {Gauthier-Villars}, volume = {32}, number = {6}, year = {1996}, mrnumber = {1422308}, zbl = {0869.60018}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_1996__32_6_725_0/} }
TY - JOUR AU - Cramer, M. AU - Rüschendorf, L. TI - Convergence of a branching type recursion JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1996 SP - 725 EP - 741 VL - 32 IS - 6 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPB_1996__32_6_725_0/ LA - en ID - AIHPB_1996__32_6_725_0 ER -
Cramer, M.; Rüschendorf, L. Convergence of a branching type recursion. Annales de l'I.H.P. Probabilités et statistiques, Tome 32 (1996) no. 6, pp. 725-741. http://archive.numdam.org/item/AIHPB_1996__32_6_725_0/
[1] Random recursive constructions of self-similar fractal measures. The non-compact case. Prob. Th. Rel. Fields, Vol. 88, 1991, pp. 497-520. | MR | Zbl
,[2] Fixed points of the smoothing transformation. Z. Wahrscheinlichkeitstheorie verw. Gebiete, Vol. 64, 1983, pp. 275-301. | MR | Zbl
and ,[3] Sur une extension de la notion de loi semi-stable. Ann. Inst. H. Poincaré, Vol. 26, 1990, pp. 261-286. | Numdam | MR | Zbl
,[4] Generalized potlach and smoothing processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete, Vol. 55, 1981, pp. 165-195. | MR | Zbl
and ,[5] Sur certaines martingales de Benoit Mandelbrot. Adv. Math., Vol. 22, 1976, pp. 131-145. | MR | Zbl
and ,[6] Evolution of Random Search Trees. Wiley, New York, 1992. | MR | Zbl
,[7] Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire. C. R. Acad. Sci. Paris, Vol. 278, 1974, pp. 289-292. | MR | Zbl
,[8] Probability Metrics and the Stability of Stochastic Models. Wiley, New York, 1991. | MR | Zbl
,[9] Probability metrics and recursive algorithms. 1991, To appear in Advances Appl. Prob., 1995. | MR | Zbl
and ,