@article{AIHPB_1997__33_1_37_0, author = {Marcus, Michael B. and Rosen, Jay}, title = {Laws of the iterated logarithm for intersections of random walks on {Z4}}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {37--63}, publisher = {Gauthier-Villars}, volume = {33}, number = {1}, year = {1997}, mrnumber = {1440255}, zbl = {0870.60065}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_1997__33_1_37_0/} }
TY - JOUR AU - Marcus, Michael B. AU - Rosen, Jay TI - Laws of the iterated logarithm for intersections of random walks on Z4 JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1997 SP - 37 EP - 63 VL - 33 IS - 1 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPB_1997__33_1_37_0/ LA - en ID - AIHPB_1997__33_1_37_0 ER -
%0 Journal Article %A Marcus, Michael B. %A Rosen, Jay %T Laws of the iterated logarithm for intersections of random walks on Z4 %J Annales de l'I.H.P. Probabilités et statistiques %D 1997 %P 37-63 %V 33 %N 1 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPB_1997__33_1_37_0/ %G en %F AIHPB_1997__33_1_37_0
Marcus, Michael B.; Rosen, Jay. Laws of the iterated logarithm for intersections of random walks on Z4. Annales de l'I.H.P. Probabilités et statistiques, Tome 33 (1997) no. 1, pp. 37-63. http://archive.numdam.org/item/AIHPB_1997__33_1_37_0/
[1] Probability, Society for Industrial and Applied Mathematics, Philadelphia, 1992. | MR | Zbl
,[2] Propriétés d'intersection des marches aléatoires, II, Comm. Math. Phys., Vol. 104, 1986, pp. 509-528. | MR | Zbl
,[3] The range of stable random walks, Ann. Probab., Vol. 19, 1991, pp. 650-705. | MR | Zbl
and ,[4] A note on the Green's function for random walk in four dimensions, Duke Math. Department, preprint.
,[5] Laws of the iterated logarithm for the local times of recurrent random walks on Z2 and of Lévy processes and recurrent random walks in the domain of attraction of Cauchy random variables, Ann. Inst. H. Poincaré Prob. Stat., Vol. 30, 1994, pp. 467-499. | Numdam | MR | Zbl
and ,[6] Laws of the iterated logarithm for the local times of symmetric Levy processes and recurrent random walks, Ann. Probab., Vol. 22, 1994, pp. 626-658. | MR | Zbl
and ,[7] Principles of random walk, Springer Verlag, New York, 1976. | MR | Zbl
,