@article{AIHPB_1997__33_1_65_0, author = {Landim, C. and Mourragui, M.}, title = {Hydrodynamic limit of mean zero asymmetric zero range processes in infinite volume}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {65--82}, publisher = {Gauthier-Villars}, volume = {33}, number = {1}, year = {1997}, mrnumber = {1440256}, zbl = {0870.60098}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_1997__33_1_65_0/} }
TY - JOUR AU - Landim, C. AU - Mourragui, M. TI - Hydrodynamic limit of mean zero asymmetric zero range processes in infinite volume JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1997 SP - 65 EP - 82 VL - 33 IS - 1 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPB_1997__33_1_65_0/ LA - en ID - AIHPB_1997__33_1_65_0 ER -
%0 Journal Article %A Landim, C. %A Mourragui, M. %T Hydrodynamic limit of mean zero asymmetric zero range processes in infinite volume %J Annales de l'I.H.P. Probabilités et statistiques %D 1997 %P 65-82 %V 33 %N 1 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPB_1997__33_1_65_0/ %G en %F AIHPB_1997__33_1_65_0
Landim, C.; Mourragui, M. Hydrodynamic limit of mean zero asymmetric zero range processes in infinite volume. Annales de l'I.H.P. Probabilités et statistiques, Tome 33 (1997) no. 1, pp. 65-82. http://archive.numdam.org/item/AIHPB_1997__33_1_65_0/
[1] Invariant measures for the zero range process, Ann. Probab., Vol. 10, 1982, pp. 525-547. | MR | Zbl
,[2] Uniqueness of solutions of the initial-value problem for ut - Δφ(u) = 0, J. Math. Pures et appl., Vol. 58, 1979, pp. 153-163. | MR | Zbl
and ,[3] Reaction diffusion equations for interacting particle systems, J. Stat. Phys., Vol. 55, 1986, pp. 523-578. | Zbl
, and ,[4] On the hydrodynamic limit of a one dimensional Ginzburg-Landau lattice model: the a priori bounds, J. Stat. Phys., Vol. 47, 1987, pp. 551-572. | MR | Zbl
,[5] On the hydrodynamic limit of a Ginzburg-Landau lattice model, Prob. Th. Rel Fields, Vol. 81, 1989, pp. 291-318. | MR | Zbl
,[6] On the diffusive nature of the entropy flow in finite systems: remarks to a paper by Guo-Papanicolaou-Varadhan, Commun. Math. Phys., 133, 1990, pp. 331-352. | MR | Zbl
,[7] Nonlinear diffusion limit for a system with nearest neighbor interactions, Comm. Math. Phys., Vol. 118, 1988, pp. 31-59. | MR | Zbl
, and ,[8] Nonequilibrium measures which exhibit a temperature gradient: study of a model, Commun. Math. Phys., Vol. 81, 1981, pp. 127-148. | MR | Zbl
, , and ,[9] Nonequilibrium behavior of many particle systems: density profile and local equilibria. Z. Wahrs. Verw. Gebiete, Vol. 58, 1981, pp. 41-53. | MR | Zbl
[10] Large Scale Dynamics of Interacting Particle Systems, Text and Monographs in Physics, Springer-Verlag, New York, 1991. | Zbl
,[11] Entropy arguments in the study of hydrodynamic limits, CARR Reports in Mathematical Physics 3/88.
,[12] Metastability of Ginzburg-Landau model with a conservation law, J. Stat. Phys., Vol. 74, 1994, pp. 705-742. | MR | Zbl
,