A weighted pointwise ergodic theorem
Annales de l'I.H.P. Probabilités et statistiques, Volume 34 (1998) no. 1, pp. 139-150.
@article{AIHPB_1998__34_1_139_0,
     author = {Assani, I.},
     title = {A weighted pointwise ergodic theorem},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {139--150},
     publisher = {Gauthier-Villars},
     volume = {34},
     number = {1},
     year = {1998},
     mrnumber = {1617709},
     zbl = {0902.28011},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPB_1998__34_1_139_0/}
}
TY  - JOUR
AU  - Assani, I.
TI  - A weighted pointwise ergodic theorem
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 1998
SP  - 139
EP  - 150
VL  - 34
IS  - 1
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPB_1998__34_1_139_0/
LA  - en
ID  - AIHPB_1998__34_1_139_0
ER  - 
%0 Journal Article
%A Assani, I.
%T A weighted pointwise ergodic theorem
%J Annales de l'I.H.P. Probabilités et statistiques
%D 1998
%P 139-150
%V 34
%N 1
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPB_1998__34_1_139_0/
%G en
%F AIHPB_1998__34_1_139_0
Assani, I. A weighted pointwise ergodic theorem. Annales de l'I.H.P. Probabilités et statistiques, Volume 34 (1998) no. 1, pp. 139-150. http://archive.numdam.org/item/AIHPB_1998__34_1_139_0/

[1] I. Assani, Strong laws for weighted sums of independently identically distributed random variables, Duke Mathematical Journal, Vol. 88, 1997, pp. 217-246. | MR | Zbl

[2] J. Bourgain, H. Furstenberg, Y. Katznelson and D. Ornstein, Return times of dynamical systems Appendix to J. Bourgain, Pointwise Ergodic Theorems for Arithmetic Sets, I.H.E.S., Vol. 69, 1989, pp. 5-45. | Numdam | MR | Zbl

[3] A. Bellow, R. Jones and J. Rosenblatt, Convergence for moving averages, Ergod. Th. & Dynam. Sys., Vol. 10, 1990, pp. 43-62. | Zbl

[4] A. Bellow and V. Losert, The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences, Trans. Amer. Math. Soc., Vol. 288, 1985, pp. 307-345. | MR | Zbl

[5] R. Salem and A. Zygmund, Some properties of trigonometric series whose terms have random signs, Acta. Math., Vol. 91, 1954, pp. 245-301. | MR | Zbl