@article{AIHPB_1998__34_2_217_0, author = {Osada, Hirofumi}, title = {An invariance principle for {Markov} processes and brownian particles with singular interaction}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {217--248}, publisher = {Gauthier-Villars}, volume = {34}, number = {2}, year = {1998}, mrnumber = {1614595}, zbl = {0914.60041}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_1998__34_2_217_0/} }
TY - JOUR AU - Osada, Hirofumi TI - An invariance principle for Markov processes and brownian particles with singular interaction JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1998 SP - 217 EP - 248 VL - 34 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPB_1998__34_2_217_0/ LA - en ID - AIHPB_1998__34_2_217_0 ER -
%0 Journal Article %A Osada, Hirofumi %T An invariance principle for Markov processes and brownian particles with singular interaction %J Annales de l'I.H.P. Probabilités et statistiques %D 1998 %P 217-248 %V 34 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPB_1998__34_2_217_0/ %G en %F AIHPB_1998__34_2_217_0
Osada, Hirofumi. An invariance principle for Markov processes and brownian particles with singular interaction. Annales de l'I.H.P. Probabilités et statistiques, Volume 34 (1998) no. 2, pp. 217-248. http://archive.numdam.org/item/AIHPB_1998__34_2_217_0/
[1] An invariance principle for reversible Markov processes. Applications to random motions in random environments, Joul. Stat. Phys., Vol. 55, Nos. 3/4 1989, pp. 787-855. | MR | Zbl
,[2] On the vortex flow in bounded domains, Commun. Math. Phys., Vol. 85, 1982, pp. 265-273. | MR | Zbl
and ,[3] Dirichlet forms and symmetric Markov processes Walter de Gruyter, 1994. | MR | Zbl
, and ,[4] Gradient dynamics of infinite point systems, Ann. Prob., Vol. 15, 1987, pp. 478-514. | MR | Zbl
,[5] Convergence of the random vortex method, Commun. Pure Appl. Math., Vol. 40, 1987, pp. 189-220. | MR | Zbl
,[6] Limit theorems for interacting particle systems. Thesis, Dept. of Mathematics, New York University, 1984.
,[7] Stochastic calculus related to non-symmetric Dirichlet forms, Osaka Jour. Math., Vol. 24, 1987, pp. 331-371. | MR | Zbl
,[8] Central limit theorems for additive functional of reversible Markov process and applications to simple exclusions, Commun. Math. Phys., Vol. 104, 1986, pp. 1-19. | MR | Zbl
and ,[9] Unendlich-dimensionale Wienerprocesse mit Wechselwirkung I, Z. Wahrschverw. Gebiete, Vol. 38, 1977, pp. 55-72. | MR | Zbl
,[10] Unendlich-dimensionale Wienerprocesse mit Wechselwirkung II, Z. Wahrschverw. Gebiete, Vol. 39, 1978, pp. 277-299. | MR | Zbl
,[11] Hydrodynamic in two dimensions and vortex theory, Commun. Math. Phys., Vol. 84, 1982, pp. 483-503. | MR | Zbl
and ,[12] Introduction to the theory of (non-symmetric) Dirichlet forms, 1992, Springer. | Zbl
and ,[13] Homogenization of diffusion processes in random fields, Ecole Polytechnique, 1994.
,[14] Diffusion processes with generators of generalized divergence form, J. Math. Kyoto Univ., Vol. 27, 1987, pp. 597-619. | MR | Zbl
,[15] A stochastic differential equation arising from the vortex problem, Proc. Japan Acad., Vol. 61, Ser. A, 1985. | MR | Zbl
,[16] Propagation of chaos for the two dimensional Navier-Stokes equation, in Proc. of Taniguchi Symp. Probabilistic Methods in Mathematical Physics, eds Ito K. and Ikeda N., 1987, pp. 303-334 | MR | Zbl
,[17] Homogenization of reflecting barrier Brownian motions, Proc. the Taniguchi Workshop at Sanda and Kyoto, 1990, Pitman Research notes in Math., Vol. 283, 1993, pp. 59-74. | MR | Zbl
,[18] Dirichlet form approach to infinite-dimensional Wiener processes with singular interactions, Commun. Math. Phys., Vol. 176, 1996, pp. 117-131. | MR | Zbl
,[19] Tagged particle processes and their non-explosion criteria, in preparation.
,[20] Positivity of self-diffusion matrix of interacting Brownian particles with hard core, in preparation.
,[21] An invariance principle for non-symmetric Markov processes and reflecting diffusions in random domains, Probab. Theory Relat. Fields, Vol. 101, 1995, pp. 45-63. | MR | Zbl
and ,[22] Lecture on Dirichlet Spaces, Univ. Erlangen-Nurnberg, 1988.
,[23] Extreme Values, Regular Variation, and Point Processes, Springer 1987 | MR | Zbl
,[24] Superstable interactions in classical statistical mechanics, Commun. Math. Phys., Vol. 18, 1970, pp. 127-159. | MR | Zbl
,[25] A remark on infinite-dimensional Wiener processes with interactions, Z. Wahrschverw. Gebiete, Vol. 47, 1979, pp. 299-304 | MR | Zbl
,[26] Large scale dynamics of interacting particles Springer-Verlag, 1991. | Zbl
,[27] Homogenization of a reflecting barrier Brownian motion in a continuum percolation cluster in Rd, Kodai Math. J., Vol. 17, 1994, pp. 228-245. | MR | Zbl
,[28] A system of infinitely many mutually reflecting Brownian balls in Rd, Probab. Theory Relat. Fields, Vol. 104, 1996, pp. 399-426. | MR | Zbl
,[29] Self diffusion of a tagged particle in equilibrium for asymmetric mean zero random walk with simple exclusion, Ann. Inst. Henri Poincaré, Vol. 31, 1, 1995, pp. 273-285. | Numdam | MR | Zbl
,