Strong approximations of bivariate uniform empirical processes
Annales de l'I.H.P. Probabilités et statistiques, Tome 34 (1998) no. 4, pp. 425-480.
@article{AIHPB_1998__34_4_425_0,
     author = {Castelle, Nathalie and Laurent-Bonvalot, Fran\c{c}oise},
     title = {Strong approximations of bivariate uniform empirical processes},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {425--480},
     publisher = {Gauthier-Villars},
     volume = {34},
     number = {4},
     year = {1998},
     mrnumber = {1632841},
     zbl = {0915.60048},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPB_1998__34_4_425_0/}
}
TY  - JOUR
AU  - Castelle, Nathalie
AU  - Laurent-Bonvalot, Françoise
TI  - Strong approximations of bivariate uniform empirical processes
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 1998
SP  - 425
EP  - 480
VL  - 34
IS  - 4
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPB_1998__34_4_425_0/
LA  - en
ID  - AIHPB_1998__34_4_425_0
ER  - 
%0 Journal Article
%A Castelle, Nathalie
%A Laurent-Bonvalot, Françoise
%T Strong approximations of bivariate uniform empirical processes
%J Annales de l'I.H.P. Probabilités et statistiques
%D 1998
%P 425-480
%V 34
%N 4
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPB_1998__34_4_425_0/
%G en
%F AIHPB_1998__34_4_425_0
Castelle, Nathalie; Laurent-Bonvalot, Françoise. Strong approximations of bivariate uniform empirical processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 34 (1998) no. 4, pp. 425-480. http://archive.numdam.org/item/AIHPB_1998__34_4_425_0/

[1] Adler R.J. and Brown L.D., Tail of behaviour for suprema of empirical process. Annals of probability, Vol 14, 1986, pp. 1-30. | MR | Zbl

[2] Bennett G., Probability inequalities for the sum of independants random variables. J. AM. Statis. Assoc., Vol. 57, 1962, pp. 33-45. | Zbl

[3] Bretagnolle J. and Massart P., Hungarian constructions from the non asymptotic view point. Annals of Probability, Vol 17, 1989, pp. 239-256. | MR | Zbl

[4] Brillinger D.R., The asymptotic representation of the sample distribution function. Bull. Amer. Math. Soc., Vol 75, 1969, pp. 545-547. | MR | Zbl

[5] Csörgö M. and Revesz P., Strong approximations in probability and statistics. Academic Press, 1981, New York. | MR | Zbl

[6] Csáki E., Investigations concerning the empirical distribution function. English translation in Selected Trans. Math. Statis. Probab., Vol 15, 1981, pp. 229-317. | Zbl

[7] Csörgö M. and Horváth L., Weighted Approximations in Probability and Statistics. Wiley & Sons, 1993. | Zbl

[8] Doob J.L., Stochastic process, Wiley, 1953, New York. | MR | Zbl

[9] Dvoretzky A., Kiefer J.C. and Wolfowitz J., Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator. Ann. Math. Stat., Vol. 33, 1956, pp. 642-669. | MR | Zbl

[10] Kieffer J., On the deviations in the Skorohod-Strassen approximation scheme. Z. Wahrschein. Verw. Geb., Vol. 13, 1969, pp. 321-332. | MR | Zbl

[11] Kiefer J., Skorohod embedding of multivariate R. V.'s, and the sample D.F.Z. Z. Wahrschein. Verw. Geb., Vol. 24, 1972, pp. 1-35. | MR | Zbl

[12] Komlós J., Major P. and Tusnády, G., An approximation of partial sums of independent RV'- and the sample D. F. I. Z. Warschein. Verw. Geb., Vol. 32, 1975, pp. 111-131. | MR | Zbl

[13] Mason D., A strong invariance theorem for the tail empirical process. Annales de l'I.H.P., Vol. 24, 1988. | Numdam | MR | Zbl

[14] Mason D. and Van Zwet R., A refinement of the KMT inequality for the uniform empirical process. Annals of Probability, Vol. 15, 1987, pp. 871-884. | MR | Zbl

[15] Massart P., The tight constant of the Dvorestsky-Kiefer-Wolfowitz inequality. Annals of Probability, Vol. 18, 1990, pp.1269-1283. | MR | Zbl

[16] Shorack G.R. and Wellner J.A., Empirical processes with applications to statistics. Wiley & Sons, 1986.

[17] Skorohod A.V., On a representation of random variables. Th. Proba. Appl., Vol. 21, 1976, pp. 628-632. | MR | Zbl

[18] Talagrand M., Sharper bounds for empirical process. Annals of Probability, Vol. 22, 1994, pp. 28-76. | MR | Zbl

[19] Tusnady G., A remark on the approximation of the sample D.F. in the multidimensional case. Periodica Math. Hung., Vol. 8, 1977, pp. 53-55. | MR | Zbl

[20] Wellner J., Limit theorems for the ratio of the empirical distribution function to the true distribution function. Z. Warschein. Verw. Geb., Vol. 45, 1978, pp. 73-88. | MR | Zbl