@article{AIHPB_1999__35_5_631_0, author = {Bezuidenhout, Carol and Grimmett, Geoffrey}, title = {A central limit theorem for random walks in random labyrinths}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {631--683}, publisher = {Gauthier-Villars}, volume = {35}, number = {5}, year = {1999}, mrnumber = {1705683}, zbl = {0938.60033}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_1999__35_5_631_0/} }
TY - JOUR AU - Bezuidenhout, Carol AU - Grimmett, Geoffrey TI - A central limit theorem for random walks in random labyrinths JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1999 SP - 631 EP - 683 VL - 35 IS - 5 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPB_1999__35_5_631_0/ LA - en ID - AIHPB_1999__35_5_631_0 ER -
%0 Journal Article %A Bezuidenhout, Carol %A Grimmett, Geoffrey %T A central limit theorem for random walks in random labyrinths %J Annales de l'I.H.P. Probabilités et statistiques %D 1999 %P 631-683 %V 35 %N 5 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPB_1999__35_5_631_0/ %G en %F AIHPB_1999__35_5_631_0
Bezuidenhout, Carol; Grimmett, Geoffrey. A central limit theorem for random walks in random labyrinths. Annales de l'I.H.P. Probabilités et statistiques, Tome 35 (1999) no. 5, pp. 631-683. http://archive.numdam.org/item/AIHPB_1999__35_5_631_0/
[1] On the chemical distance for supercritical Bernoulli percolation, Ann. Probab. 24 (1996) 1036-1048. | MR | Zbl
and ,[2] Transport properties of stochastic Lorentz models, Rev. Modern Phys. 54 (1982) 195-234. | MR
,[3] Transport properties of the one dimensional stochastic Lorentz model. I. Velocity autocorrelation, J. Statist. Phys. 31 (1982) 231-254. | MR
and ,[4] Convergence of Probability Measures, Wiley, New York, 1968. | MR | Zbl
,[5] Recurrence properties of Lorentz lattice gas cellular automata, J. Statist. Phys. 67 (1992) 289-302. | MR | Zbl
and ,[6] Density and uniqueness in percolation, Comm. Math. Phys. 121 ( 1989) 501-505. | MR | Zbl
and ,[7] New types of diffusions in lattice gas cellular automata, in: M. Mareschal and B.L. Holian (Eds.), Microscopic Simulations of Complex Hydrodynamical Phenomena, Plenum Press, New York, 1991, pp. 137-152.
,[8] New results for diffusion in Lorentz lattice gas cellular automata, J. Statist. Phys. 81 (1995) 445-466.
and ,[9] Novel phenomena in Lorentz lattice gases, Physica A 219 (1995) 56-87.
and ,[10] Invariance principle for reversible Markov processes with application to diffusion in the percolation regime, in: R.T. Durrett (Ed.), Particle Systems, Random Media and Large Deviations, Contemporary Mathematics No. 41, Amer. Math. Soc., Providence, RI, 1985, pp. 71-85. | MR | Zbl
, , and ,[11] An invariance principle for reversible Markov processes. Applications to random motions in random environments, J. Statist. Phys. 55 (1989) 787-855. | MR | Zbl
, , and ,[12] Stochastic Processes, Wiley, New York, 1953. | MR | Zbl
,[13] Random Walks and Electric Networks, Carus Mathematical Monograph No. 22, AMA, Washington, DC, 1984. | Zbl
and ,[14] Collected Scientific Papers, M.J. Klein (Ed.), North-Holland, Amsterdam, 1959. | Zbl
,[15] Markov Processes, Characterization and Convergence, Wiley, New York, 1986. | MR | Zbl
and ,[16] Antisymmetric functionals of reversible Markov processes, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 31 (1995) 177-190. | Numdam | MR | Zbl
,[17] Percolation, Springer, Berlin, 1989. | Zbl
,[18] Percolation and disordered systems, in: P. Bernard (Ed.), Ecole d'Eté de Probabilités de Saint Flour XXVI-1996, Lecture Notes in Mathematics, Vol. 1665, Springer, Berlin, 1997, pp. 153-300. | MR | Zbl
,[19] First-passage percolation, network flows and electrical networks, Z. Wahr. Ver. Geb. 66 (1984) 335-366. | MR | Zbl
and ,[20] The supercritical phase of percolation is well behaved, Proc. Royal Society (London), Ser. A 430 (1990) 439-457. | MR | Zbl
and ,[21] Random walks in random labyrinths, Markov Process Related Fields 2 (1996) 69-86. | MR | Zbl
, and ,[22] Invariance principle for the stochastic Lorentz lattice gas, J. Statist. Phys. 66 (1992) 1583-1598. | MR | Zbl
, and ,[23] Percolation Theory for Mathematicians, Birkhäuser, Boston, 1982. | Zbl
,[24] Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusion, Comm. Math. Phys. 104 (1986) 1-19. | MR | Zbl
and ,[25] Domination by product measures, Ann. Probab. 25 (1997) 71-95. | MR | Zbl
, and ,[26] The motion of electrons in metallic bodies, I, II, and III, Koninklijke Akademie van Wetenschappen te Amsterdam, Section of Sciences 7 (1905) 438-453, 585-593, 684-691.
,[27] Surface order large deviations for Ising, Potts and percolation models, Probab. Theory Related Fields 104 (1996) 427-466. | MR | Zbl
,[28] Infinite paths in a Lorentz lattice gas model, Probab. Theory Related Fields (1996), to appear. | MR | Zbl
,[29] Persistent random walks in random environment, Probab. Theory Related Fields 71 (1986) 615-625. | MR | Zbl
,[30] Diffusion in Lorentz lattice gas cellular automata: The honeycomb and quasi-lattices compared with the square and triangular lattices, J. Statist. Phys. 81 (1995) 467-495.
and ,[31] Lorentz lattice-gas and kinetic-walk model, Phys. Rev. A 44 (1991) 2410-2428.
, and ,