Thin points for brownian motion
Annales de l'I.H.P. Probabilités et statistiques, Tome 36 (2000) no. 6, pp. 749-774.
@article{AIHPB_2000__36_6_749_0,
     author = {Dembo, Amir and Peres, Yuval and Rosen, Jay and Zeitouni, Ofer},
     title = {Thin points for brownian motion},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {749--774},
     publisher = {Gauthier-Villars},
     volume = {36},
     number = {6},
     year = {2000},
     mrnumber = {1797392},
     zbl = {0977.60073},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPB_2000__36_6_749_0/}
}
TY  - JOUR
AU  - Dembo, Amir
AU  - Peres, Yuval
AU  - Rosen, Jay
AU  - Zeitouni, Ofer
TI  - Thin points for brownian motion
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2000
SP  - 749
EP  - 774
VL  - 36
IS  - 6
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPB_2000__36_6_749_0/
LA  - en
ID  - AIHPB_2000__36_6_749_0
ER  - 
%0 Journal Article
%A Dembo, Amir
%A Peres, Yuval
%A Rosen, Jay
%A Zeitouni, Ofer
%T Thin points for brownian motion
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2000
%P 749-774
%V 36
%N 6
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPB_2000__36_6_749_0/
%G en
%F AIHPB_2000__36_6_749_0
Dembo, Amir; Peres, Yuval; Rosen, Jay; Zeitouni, Ofer. Thin points for brownian motion. Annales de l'I.H.P. Probabilités et statistiques, Tome 36 (2000) no. 6, pp. 749-774. http://archive.numdam.org/item/AIHPB_2000__36_6_749_0/

[1] Ciesielski Z., Taylor S.J., First passage and sojourn times and the exact Hausdorff measure of the sample path, Trans. Amer. Math. Soc. 103 (1962) 434-452. | MR | Zbl

[2] Dembo A., Peres Y., Rosen J., Zeitouni O., Thick points for spatial Brownian motion: Multifractal analysis of occupation measure, Ann. Probab. 28 (2000) 1-35. | MR | Zbl

[3] Dembo A., Peres Y., Rosen J., Zeitouni O., Thick points for planar Brownian motion and the Erdös-Taylor conjecture on random walk, Acta Math., to appear. | MR | Zbl

[4] Getoor R.K., The Brownian escape process, Ann. Probab. 7 (1979) 864-867. | MR | Zbl

[5] Gruet J.C., Shi Z., The occupation time of Brownian motion in a ball, J. Theoret. Probab. 9 (1996) 429-445. | MR | Zbl

[6] Joyce H., Preiss D., On the existence of subsets of finite positive packing measure, Mathematika 42 (1995) 15-24. | MR | Zbl

[7] Kahane J.-P., Some Random Series of Functions, 2nd edition, Cambridge University Press, 1985. | MR | Zbl

[8] Kaufman R., Une propriété métrique du mouvement Brownien, C. R. Acad. Sci. Paris 268 (1969) 727-728. | MR | Zbl

[9] Kono N., The exact Hausdorff measure of irregularity points for a Brownian path, Z. W. 40 (1977) 257-282. | MR | Zbl

[10] Khoshnevisan D., Peres Y., Xiao Y., Limsup random fractals, Elect. J. Probab. 5 (2000), paper 4, 1-24. | MR | Zbl

[11] Mattila P., Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, 1995. | MR | Zbl

[12] Munkres J.R., Topology: A First Course, Prentice-Hall, Englewood Cliffs, NJ, 1975. | MR | Zbl

[ 13] Orey S., Taylor S.J., How often on a Brownian path does the law of the iterated logarithm fail?, Proc. Lond. Math. Soc. 28 (1974) 174-192. | MR | Zbl

[14] Perkins E.A., Taylor S.J., Uniform measure results for the image of subsets under Brownian motion, Probab. Theory Related Fields 76 (1987) 257-289. | MR | Zbl