@article{AIHPB_2001__37_4_421_0, author = {Fischer, Torsten}, title = {Coupled map lattices with asynchronous updatings}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {421--479}, publisher = {Elsevier}, volume = {37}, number = {4}, year = {2001}, mrnumber = {1876839}, zbl = {0981.37016}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_2001__37_4_421_0/} }
Fischer, Torsten. Coupled map lattices with asynchronous updatings. Annales de l'I.H.P. Probabilités et statistiques, Tome 37 (2001) no. 4, pp. 421-479. http://archive.numdam.org/item/AIHPB_2001__37_4_421_0/
[1] Random Dynamical Systems, Springer, 1998. | MR
,[2] The spectrum of weakly coupled map lattices, J. Math. Pures et Appl. 77 (1998) 539-584. | MR | Zbl
, , , , ,[3] Wahrscheinlichkeitstheorie, de Gruyter, 1991. | MR | Zbl
,[4] Coupled analytic maps, Nonlinearity 8 (1995) 379-396. | MR | Zbl
, ,[5] High temperature expansions and dynamical systems, Comm. Math. Phys. 178 (1996) 703-732. | MR | Zbl
, ,[6] Infinite dimensional SRB-measures. Lattice dynamics (Paris, 1995), Physica D 103 (1997) 1-4, 18-33. | MR
, ,[7] Coupled map lattices: One step forward and two steps back, Physica D 86 (1995) 248-255. | MR | Zbl
,[8] Space-time chaos in coupled map lattices, Nonlinearity 1 (1988) 491-516. | MR | Zbl
, ,[9] Markov processes with a large number of locally interacting components: existence of a limit process and its ergodicity, Problems Inform. Transmission 7 (1971) 149-164. | MR
,[10] Markov processes with many locally interacting components - the reversible case and some generalizations, Problems Inform. Transmission 7 (1971) 235-241.
,[11] Multicomponent Random Systems, Advances in Probability and Related Topics, 6, 1980, (originally published in Russian). | MR | Zbl
, (Eds.),[12] Transfer operators for deterministic and stochastic coupled map lattices, Thesis, University of Warwick, 1998.
,[13] Transfer operators for coupled analytic maps, Ergodic Theory Dynamical Systems 20 (2000) 109-143. | MR | Zbl
, ,[14] Time-dependent statistics of the Ising model, J. Math. Phys. 4 (1963) 294-307. | MR | Zbl
,[15] Nearest-neighbor Markov interaction processes on multidimensional lattices, Adv. Math. 9 (1972) 66-89. | MR | Zbl
,[16] A class of interactions in an infinite particle system, Adv. Math. 5 (1970) 291-309. | MR | Zbl
,[17] Equilibrium states for lattice models of hyperbolic type, Nonlinearity 8 (5) (1994) 631-659. | MR | Zbl
,[18] Ergodic properties of coupled map lattices of hyperbolic type, Penns. State University Dissertation, 1995.
,[19] uniqueness of Gibbs states and exponential decay of correlation for some lattice models, J. Statist. Phys. 82 (3-4) (1995). | MR
, ,[20] Equilibrium measures for coupled map lattices: existence, uniqueness and finite-dimensional approximations, CMP 193 (1998) 675-711. | MR | Zbl
, ,[21] Transfer operators for coupled map lattices, Ergodic Theory Dynamical Systems 12 (1992) 297-318. | MR | Zbl
, ,[22] Real and Functional Analysis, Springer, 1993. | MR | Zbl
,[23] Existence theorems for infinite particle systems, Trans. Amer. Math. Soc. 165 (1972) 471-481. | MR | Zbl
,[24] Interacting Particle Systems, Grundlehren der mathematischen Wissenschaften, 276, Springer, 1985. | MR | Zbl
,[25] Stochastic stability of weakly coupled lattice maps, Nonlinearity 10 (1997) 715-730. | MR | Zbl
, ,[26] Space-time chaos in chains of weakly interacting hyperbolic mappings, Adv. Soviet Math. 3 (1991) 165-198. | MR | Zbl
, ,[27] Random processes defined through the interaction of an infinite particle system, in: Springer Lecture Notes in Mathematics, 89, Springer, 1969, pp. 201-223. | MR | Zbl
,[28] Interaction of Markov processes, Adv. Math. 5 (1970) 246-290. | MR | Zbl
,[29] The Sinai-Bowen-Ruelle measure for a multidimensional lattice of interacting hyperbolic mappings, Russ. Akad. Dokl. Math. 47 (1993) 117-121. | MR | Zbl
,[30] Construction of an analogue of Bowen-Ruell-Sinai measure for a multidimensional lattice of interacting hyperbolic mappings, Russ. Akad. Math. Sbornik 79 (1994) 347-363. | MR | Zbl
,