Coupled map lattices with asynchronous updatings
Annales de l'I.H.P. Probabilités et statistiques, Volume 37 (2001) no. 4, p. 421-479
@article{AIHPB_2001__37_4_421_0,
     author = {Fischer, Torsten},
     title = {Coupled map lattices with asynchronous updatings},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Elsevier},
     volume = {37},
     number = {4},
     year = {2001},
     pages = {421-479},
     zbl = {0981.37016},
     mrnumber = {1876839},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2001__37_4_421_0}
}
Fischer, Torsten. Coupled map lattices with asynchronous updatings. Annales de l'I.H.P. Probabilités et statistiques, Volume 37 (2001) no. 4, pp. 421-479. http://www.numdam.org/item/AIHPB_2001__37_4_421_0/

[1] L Arnold, Random Dynamical Systems, Springer, 1998. | MR 1374107

[2] V Baladi, M Degli Esposti, S Isola, E Järvenpää, A Kupiainen, The spectrum of weakly coupled map lattices, J. Math. Pures et Appl. 77 (1998) 539-584. | MR 1628169 | Zbl 1023.37009

[3] H Bauer, Wahrscheinlichkeitstheorie, de Gruyter, 1991. | MR 1150240 | Zbl 0714.60001

[4] J Bricmont, A Kupiainen, Coupled analytic maps, Nonlinearity 8 (1995) 379-396. | MR 1331818 | Zbl 0836.58027

[5] J Bricmont, A Kupiainen, High temperature expansions and dynamical systems, Comm. Math. Phys. 178 (1996) 703-732. | MR 1395211 | Zbl 0859.58037

[6] J Bricmont, A Kupiainen, Infinite dimensional SRB-measures. Lattice dynamics (Paris, 1995), Physica D 103 (1997) 1-4, 18-33. | MR 1464238

[7] L.A Bunimovich, Coupled map lattices: One step forward and two steps back, Physica D 86 (1995) 248-255. | MR 1353959 | Zbl 0890.58029

[8] L.A Bunimovich, Y.G Sinai, Space-time chaos in coupled map lattices, Nonlinearity 1 (1988) 491-516. | MR 967468 | Zbl 0679.58028

[9] R.L Dobrushin, Markov processes with a large number of locally interacting components: existence of a limit process and its ergodicity, Problems Inform. Transmission 7 (1971) 149-164. | MR 310999

[10] R.L Dobrushin, Markov processes with many locally interacting components - the reversible case and some generalizations, Problems Inform. Transmission 7 (1971) 235-241.

[11] Dobrushin R.L, Sinai Ya.G (Eds.), Multicomponent Random Systems, Advances in Probability and Related Topics, 6, 1980, (originally published in Russian). | MR 599530 | Zbl 0425.00018

[12] T Fischer, Transfer operators for deterministic and stochastic coupled map lattices, Thesis, University of Warwick, 1998.

[13] T Fischer, H.H Rugh, Transfer operators for coupled analytic maps, Ergodic Theory Dynamical Systems 20 (2000) 109-143. | MR 1747027 | Zbl 0984.37025

[14] R.J Glauber, Time-dependent statistics of the Ising model, J. Math. Phys. 4 (1963) 294-307. | MR 148410 | Zbl 0145.24003

[15] T.E Harris, Nearest-neighbor Markov interaction processes on multidimensional lattices, Adv. Math. 9 (1972) 66-89. | MR 307392 | Zbl 0267.60107

[16] R Holley, A class of interactions in an infinite particle system, Adv. Math. 5 (1970) 291-309. | MR 268960 | Zbl 0219.60054

[17] M Jiang, Equilibrium states for lattice models of hyperbolic type, Nonlinearity 8 (5) (1994) 631-659. | MR 1355036 | Zbl 0836.58032

[18] M Jiang, Ergodic properties of coupled map lattices of hyperbolic type, Penns. State University Dissertation, 1995.

[19] M Jiang, A Mazel, uniqueness of Gibbs states and exponential decay of correlation for some lattice models, J. Statist. Phys. 82 (3-4) (1995). | MR 1372428

[20] M Jiang, Ya.B Pesin, Equilibrium measures for coupled map lattices: existence, uniqueness and finite-dimensional approximations, CMP 193 (1998) 675-711. | MR 1624859 | Zbl 0944.37005

[21] G Keller, M Künzle, Transfer operators for coupled map lattices, Ergodic Theory Dynamical Systems 12 (1992) 297-318. | MR 1176625 | Zbl 0737.58032

[22] S Lang, Real and Functional Analysis, Springer, 1993. | MR 1216137 | Zbl 0831.46001

[23] T.M Liggett, Existence theorems for infinite particle systems, Trans. Amer. Math. Soc. 165 (1972) 471-481. | MR 309218 | Zbl 0239.60072

[24] T.M Liggett, Interacting Particle Systems, Grundlehren der mathematischen Wissenschaften, 276, Springer, 1985. | MR 776231 | Zbl 0559.60078

[25] C Maes, A Van Moffaert, Stochastic stability of weakly coupled lattice maps, Nonlinearity 10 (1997) 715-730. | MR 1448583 | Zbl 0962.82010

[26] Ya.B Pesin, Ya.G Sinai, Space-time chaos in chains of weakly interacting hyperbolic mappings, Adv. Soviet Math. 3 (1991) 165-198. | MR 1118162 | Zbl 0850.70250

[27] F Spitzer, Random processes defined through the interaction of an infinite particle system, in: Springer Lecture Notes in Mathematics, 89, Springer, 1969, pp. 201-223. | MR 268964 | Zbl 0181.43601

[28] F Spitzer, Interaction of Markov processes, Adv. Math. 5 (1970) 246-290. | MR 268959 | Zbl 0312.60060

[29] D.L Volevich, The Sinai-Bowen-Ruelle measure for a multidimensional lattice of interacting hyperbolic mappings, Russ. Akad. Dokl. Math. 47 (1993) 117-121. | MR 1218960 | Zbl 0823.58025

[30] D.L Volevich, Construction of an analogue of Bowen-Ruell-Sinai measure for a multidimensional lattice of interacting hyperbolic mappings, Russ. Akad. Math. Sbornik 79 (1994) 347-363. | MR 1239757 | Zbl 0821.58027