Spectral gap and logarithmic Sobolev inequality for unbounded conservative spin systems
Annales de l'I.H.P. Probabilités et statistiques, Volume 38 (2002) no. 5, p. 739-777
@article{AIHPB_2002__38_5_739_0,
     author = {Landim, Claudio and Panizo, G. and Yau, H. T.},
     title = {Spectral gap and logarithmic Sobolev inequality for unbounded conservative spin systems},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Elsevier},
     volume = {38},
     number = {5},
     year = {2002},
     pages = {739-777},
     zbl = {1022.60087},
     mrnumber = {1931585},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2002__38_5_739_0}
}
Landim, C.; Panizo, G.; Yau, H. T. Spectral gap and logarithmic Sobolev inequality for unbounded conservative spin systems. Annales de l'I.H.P. Probabilités et statistiques, Volume 38 (2002) no. 5, pp. 739-777. http://www.numdam.org/item/AIHPB_2002__38_5_739_0/

[1] L. Bertini, B. Zegarlinski, Coercive inequalities for Kawasaki dynamics: The product case, Markov Proc. Related Fields 5 (1999) 125-162. | MR 1762171 | Zbl 0934.60096

[2] L. Bertini, B. Zegarlinski, Coercive inequalities for Gibbs measures, J. Funct. Anal. 162 (1999) 257-289. | MR 1682059 | Zbl 0932.60061

[3] P. Caputo, A remark on spectral gap and logarithmic Sobolev inequalities for conservative spin systems, Preprint, 2001.

[4] N. Cancrini, F. Martinelli, Comparison of finite volume canonical and grand canonical Gibbs measures under a mixing condition, Markov Proc. Related Fields 6 (2000) 23-72. | MR 1758982 | Zbl 1005.82017

[5] N. Cancrini, F. Martinelli, On the spectral gap of Kawasaki dynamics under a mixing condition revisited, J. Math. Phys. 41 (2000) 1391-1423. | MR 1757965 | Zbl 0977.82031

[6] E.B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, 1989. | MR 990239 | Zbl 0699.35006

[7] J.D. Deuschel, D.W. Stroock, Large Deviations, Academic Press, Boston, 1989. | MR 997938 | Zbl 0705.60029

[8] P.A. Ferrari, A. Galves, C. Landim, Rate of convergence to equilibrium of symmetric simple exclusion processes, Markov Proc. Related Fields 6 (2000) 73-88. | MR 1758983 | Zbl 0999.60088

[9] E. Janvresse, C. Landim, J. Quastel, H.T. Yau, Relaxation to equilibrium of conservative dynamics I: zero range processes, Ann. Probab. 27 (1999) 325-360. | MR 1681098 | Zbl 0951.60095

[10] C. Kipnis, C. Landim, Scaling Limit of Interacting Particle Systems, Grundlehren der mathematischen Wissenschaften, 320, Springer-Verlag, Berlin, 1999. | MR 1707314 | Zbl 0927.60002

[11] C. Landim, Decay to equilibrium in L∞ of finite interacting particle systems in infinite volume, Markov Proc. Related Fields 4 (1998) 517-534. | Zbl 0928.60093

[12] C. Landim, S. Sethuraman, S.R.S. Varadhan, Spectral gap for zero-range dynamics, Ann. Probab. 24 (1996) 1871-1902. | MR 1415232 | Zbl 0870.60095

[13] M. Ledoux, Logarithmic Sobolev inequalities for unbounded spin systems revisited, Preprint, 2000.

[14] S.L. Lu, H.T. Yau, Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Comm. Math. Phys. 156 (1993) 433-499. | MR 1233852 | Zbl 0779.60078

[15] H.T. Yau, Logarithmic Sobolev inequality for generalized exclusion processes, Probab. Theory Related Fields (1997). | MR 1483598 | Zbl 0903.60087

[16] H.T. Yau, Logarithmic Sobolev inequality for lattice gases with mixing conditions, Comm. Math. Phys. 181 (1996) 367-408. | MR 1414837 | Zbl 0864.60079