@article{AIHPB_2003__39_1_135_0, author = {Dawson, Donald A. and Fleischmann, Klaus and Mytnik, Leonid and Perkins, Edwin A. and Xiong, Jie}, title = {Mutually catalytic branching in the plane : uniqueness}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {135--191}, publisher = {Elsevier}, volume = {39}, number = {1}, year = {2003}, mrnumber = {1959845}, zbl = {1016.60091}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_2003__39_1_135_0/} }
TY - JOUR AU - Dawson, Donald A. AU - Fleischmann, Klaus AU - Mytnik, Leonid AU - Perkins, Edwin A. AU - Xiong, Jie TI - Mutually catalytic branching in the plane : uniqueness JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2003 SP - 135 EP - 191 VL - 39 IS - 1 PB - Elsevier UR - http://archive.numdam.org/item/AIHPB_2003__39_1_135_0/ LA - en ID - AIHPB_2003__39_1_135_0 ER -
%0 Journal Article %A Dawson, Donald A. %A Fleischmann, Klaus %A Mytnik, Leonid %A Perkins, Edwin A. %A Xiong, Jie %T Mutually catalytic branching in the plane : uniqueness %J Annales de l'I.H.P. Probabilités et statistiques %D 2003 %P 135-191 %V 39 %N 1 %I Elsevier %U http://archive.numdam.org/item/AIHPB_2003__39_1_135_0/ %G en %F AIHPB_2003__39_1_135_0
Dawson, Donald A.; Fleischmann, Klaus; Mytnik, Leonid; Perkins, Edwin A.; Xiong, Jie. Mutually catalytic branching in the plane : uniqueness. Annales de l'I.H.P. Probabilités et statistiques, Volume 39 (2003) no. 1, pp. 135-191. http://archive.numdam.org/item/AIHPB_2003__39_1_135_0/
[1] Collision local times and measure-valued processes, Can. J. Math. 43 (5) (1991) 897-938. | MR | Zbl
, , ,[2] Measure-valued Markov Processes, École d'été de Probabilités de Saint Flour, 1991. | Zbl
,[3] Mutually catalytic branching in the plane: Finite measure states, Ann. Probab. 30 (4) (2002) 1681-1762. | MR | Zbl
, , , , , ,[4] Mutually catalytic branching in the plane: infinite measure states, Electron. J. Probab. 7 (15) (2002). | MR | Zbl
, , , , , ,[5] Long time behaviour and co-existence in a mutually catalytic branching model, Ann. Probab. 26 (3) (1998) 1088-1138. | MR | Zbl
, ,[6] Particle representations for measure-valued population models, Ann. Probab. 27 (1999) 166-205. | MR | Zbl
, ,[7] Markov Process: Characterization and Convergence, John Wiley and Sons, New York, 1986. | MR | Zbl
, ,[8] Collision local times, historical stochastic calculus, and competing superprocesses, Electron. J. Probab. 3 (5) (1998). | MR | Zbl
, ,[9] Stochastic differential equations for some measure-valued diffusions, Probab. Theory Related Fields 79 (1988) 201-225. | MR | Zbl
, ,[10] Un cours sur les intégrales stochastiques, in: (Ed.), Séminaire de Probabilités, X, Lecture Notes in Mathematics, 511, Springer, Berlin, 1976, pp. 245-400. | Numdam | MR | Zbl
,[11] Superprocesses in random environments, Ann. Probab. 24 (1996) 1953-1978. | MR | Zbl
,[12] Uniqueness for a mutually catalytic branching model, Probab. Theory Related Fields 112 (2) (1998) 245-253. | MR | Zbl
,[13] Measure-valued branching diffusions with spatial interactions, Probab. Theory Related Fields 94 (1992) 189-245. | MR | Zbl
,[14] On the martingale problem for interactive measure-valued branching diffusions, Mem. Amer. Math. Soc. 549 (1995). | MR | Zbl
,[15] One-dimensional stochastic partial differential equations and the branching measure diffusion, Probab. Theory Related Fields 81 (1989) 319-340. | MR | Zbl
,[16] An introduction to stochastic partial differential equations, Lecture Notes in Mathematics 1180 (1986) 265-439. | MR | Zbl
,