Nonequilibrium central limit theorem for a tagged particle in symmetric simple exclusion
Annales de l'I.H.P. Probabilités et statistiques, Volume 42 (2006) no. 5, p. 567-577
@article{AIHPB_2006__42_5_567_0,
     author = {Jara, M. D. and Landim, Claudio},
     title = {Nonequilibrium central limit theorem for a tagged particle in symmetric simple exclusion},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Elsevier},
     volume = {42},
     number = {5},
     year = {2006},
     pages = {567-577},
     doi = {10.1016/j.anihpb.2005.04.007},
     zbl = {1101.60080},
     mrnumber = {2259975},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2006__42_5_567_0}
}
Jara, M. D.; Landim, C. Nonequilibrium central limit theorem for a tagged particle in symmetric simple exclusion. Annales de l'I.H.P. Probabilités et statistiques, Volume 42 (2006) no. 5, pp. 567-577. doi : 10.1016/j.anihpb.2005.04.007. http://www.numdam.org/item/AIHPB_2006__42_5_567_0/

[1] R. Arratia, The motion of a tagged particle in the simple symmetric exclusion system in Z, Ann. Probab. 11 (1983) 362-373. | MR 690134 | Zbl 0515.60097

[2] P.A. Ferrari, E. Presutti, E. Scacciatelli, M.E. Vares, The symmetric simple exclusion process, I: Probability estimates, Stochastic Process. Appl. 39 (1991) 89-105. | MR 1135087 | Zbl 0749.60094

[3] A. Galves, C. Kipnis, H. Spohn, unpublished manuscript.

[4] C. Kipnis, S.R.S. Varadhan, Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusion, Comm. Math. Phys. 106 (1986) 1-19. | MR 834478 | Zbl 0588.60058

[5] J. Quastel, F. Rezakhanlou, S.R.S. Varadhan, Large deviations for the symmetric simple exclusion process in dimension d3, Probab. Theory Related Fields 113 (1999) 1-84. | Zbl 0928.60087

[6] K. Ravishankar, Fluctuations from the hydrodynamical limit for the symmetric simple exclusion in Z d , Stochastic Process. Appl. 42 (1992) 31-37. | MR 1172505 | Zbl 0754.60127

[7] F. Rezakhanlou, Propagation of chaos for symmetric simple exclusion, Comm. Pure Appl. Math. XLVII (1994) 943-957. | MR 1283878 | Zbl 0808.60083

[8] H. Rost, M.E. Vares, Hydrodynamics of a one dimensional nearest neighbor model, Contemp. Math. 41 (1985) 329-342. | MR 814722 | Zbl 0572.60095

[9] S. Sethuraman, S.R.S. Varadhan, H.T. Yau, Diffusive limit of a tagged particle in asymmetric exclusion process, Comm. Pure Appl. Math. 53 (2000) 972-1006. | MR 1755948 | Zbl 1029.60084

[10] V. Thomée, Finite difference methods for linear parabolic equations, in: Ciarlet P.G., Lions J.L. (Eds.), Handbook of Numerical Analysis, North-Holland, 1990, pp. 5-196. | MR 1039324 | Zbl 0875.65080

[11] S.R.S. Varadhan, Self diffusion of a tagged particle in equilibrium for asymmetric mean zero random walks with simple exclusion, Ann. Inst. H. Poincaré Probab. Statist. 31 (1995) 273-285. | Numdam | MR 1340041 | Zbl 0816.60093