Soit le mouvement Brownien fractionnaire de paramètre . Lorsque , nous considérons des équations de diffusion de la forme
Let be the fractional brownian motion with parameter . When , we consider diffusion equations of the type
Mots-clés : central limit theorem, estimation, fractional brownian motion, gaussian processes, Hermite polynomials
@article{AIHPB_2008__44_2_191_0, author = {Berzin, Corinne and Le\'on, Jos\'e R.}, title = {Estimation in models driven by fractional brownian motion}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {191--213}, publisher = {Gauthier-Villars}, volume = {44}, number = {2}, year = {2008}, doi = {10.1214/07-AIHP105}, mrnumber = {2446320}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/07-AIHP105/} }
TY - JOUR AU - Berzin, Corinne AU - León, José R. TI - Estimation in models driven by fractional brownian motion JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 191 EP - 213 VL - 44 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/07-AIHP105/ DO - 10.1214/07-AIHP105 LA - en ID - AIHPB_2008__44_2_191_0 ER -
%0 Journal Article %A Berzin, Corinne %A León, José R. %T Estimation in models driven by fractional brownian motion %J Annales de l'I.H.P. Probabilités et statistiques %D 2008 %P 191-213 %V 44 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/07-AIHP105/ %R 10.1214/07-AIHP105 %G en %F AIHPB_2008__44_2_191_0
Berzin, Corinne; León, José R. Estimation in models driven by fractional brownian motion. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 2, pp. 191-213. doi : 10.1214/07-AIHP105. http://archive.numdam.org/articles/10.1214/07-AIHP105/
[1] Almost sure oscillation of certain random processes. Bernoulli 2 (1996) 257-270. | MR | Zbl
and .[2] Convergence in fractional models and applications. Electron. J. Probab. 10 (2005) 326-370. | MR | Zbl
and .[3] Estimating the Hurst parameter. Stat. Inference Stoch. Process. 10 (2007) 49-73. | MR | Zbl
and .[4] Stock price returns and the Joseph effect: A fractional version of the Black-Scholes model. In Seminar on Stochastic Analysis, Random Fields and Applications (Ascona, 1993) 327-351. Switzerland. | MR | Zbl
, and .[5] Stochastic analysis of the fractional Brownian motion. Potential Anal. 10 (1999) 177-214. | MR | Zbl
and .[6] Stochastic volatility and fractional Brownian motion. Stochastic Process. Appl. 113 (2004) 143-172. | MR | Zbl
and .[7] Ordinary differential equations with fractal noise. Proc. Amer. Math. Soc. 127 (1999) 1021-1028. | MR | Zbl
and .[8] Stochastic analysis of fractional Brownian motions. Stochastics Stochastics Rep. 55 (1995) 121-140. | MR | Zbl
.[9] Differential equations driven by rough signals, I: An extension of an inequality of L. C. Young. Math. Res. Lett. 1 (1994) 451-464. | MR | Zbl
.[10] Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 (1968) 422-437. | MR | Zbl
and .[11] Differential equations driven by fractional Brownian motion. Collect. Math. 53 (2001) 55-81. | MR | Zbl
and .Cité par Sources :