Nonequilibrium fluctuations for a tagged particle in one-dimensional sublinear zero-range processes
Annales de l'I.H.P. Probabilités et statistiques, Volume 49 (2013) no. 3, p. 611-637

Nonequilibrium fluctuations of a tagged, or distinguished particle in a class of one dimensional mean-zero zero-range systems with sublinear, increasing rates are derived. In Jara-Landim-Sethuraman (Probab. Theory Related Fields 145 (2009) 565-590), processes with at least linear rates are considered. A different approach to establish a main “local replacement” limit is required for sublinear rate systems, given that their mixing properties are much different. The method discussed also allows to capture the fluctuations of a “second-class” particle in unit rate, symmetric zero-range models.

Nous démontrons les fluctuations hors d'équilibre d'une particule marquée pour une classe de systèmes de particules à portée nulle uni-dimensionels de moyenne nulle dont le taux de sauts croit de manière sous-linéaire. Dans Jara-Landim-Sethuraman (Probab. Theory Related Fields 145 (2009) 565-590), ce résutat a été démontré pour des processus dont le taux croit au moins linéairement. La démonstration du lemme de remplacement dans le cas sous-linéaire exige une nouvelle approche en conséquence des différences entre les propriétés de mélanges des deux processus. La méthode présentée permet également de démontrer les fluctuations d’une particule de deuxième classe dans le modèle à portée nulle symmétrique dont le taux de sauts est égal à 1.

DOI : https://doi.org/10.1214/12-AIHP478
Classification:  60K35
Keywords: interacting, particle system, zero-range, tagged, nonequilibrium, diffusion
@article{AIHPB_2013__49_3_611_0,
     author = {Jara, Milton and Landim, Claudio and Sethuraman, Sunder},
     title = {Nonequilibrium fluctuations for a tagged particle in one-dimensional sublinear zero-range processes},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Gauthier-Villars},
     volume = {49},
     number = {3},
     year = {2013},
     pages = {611-637},
     doi = {10.1214/12-AIHP478},
     mrnumber = {3112428},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2013__49_3_611_0}
}
Jara, Milton; Landim, Claudio; Sethuraman, Sunder. Nonequilibrium fluctuations for a tagged particle in one-dimensional sublinear zero-range processes. Annales de l'I.H.P. Probabilités et statistiques, Volume 49 (2013) no. 3, pp. 611-637. doi : 10.1214/12-AIHP478. http://www.numdam.org/item/AIHPB_2013__49_3_611_0/

[1] A. De Masi and E. Presutti. Mathematical Methods for Hydrodynamic Limits. Lecture Notes in Mathematics 1501. Springer, Berlin, 1991. | MR 1175626 | Zbl 0754.60122

[2] M. R. Evans and T. Hanney. Nonequilibrium statistical mechanics of the zero-range process and related models. J. Phys. A: Math. Gen. 38 (2005) 195-240. | MR 2145800 | Zbl 1086.82012

[3] I. Grigorescu. Self-diffusion for Brownian motions with local interaction. Ann. Probab. 27 (1999) 1208-1267. | MR 1733146 | Zbl 0961.60099

[4] M. D. Jara. Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps. Commun. Pure Appl. Math. 62 (2009) 198-214. | MR 2468608 | Zbl 1153.82015

[5] M. Jara and C. Landim. Nonequilibrium central limit theorem for a tagged particle in symmetric simple exclusion. Ann. Inst. Henri Poincaré Probab. Stat. 42 (2006) 567-577. | Numdam | MR 2259975 | Zbl 1101.60080

[6] M. Jara, C. Landim and S. Sethuraman. Nonequilibrium fluctuations for a tagged particle in mean-zero one dimensional zero-range processes. Probab. Theory Related Fields 145 (2009) 565-590. | MR 2529439 | Zbl 1185.60113

[7] C. Kipnis and C. Landim. Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften 320. Springer, Berlin, 1999. | MR 1707314 | Zbl 0927.60002

[8] C. Kipnis and S. R. S. Varadhan. Central limit theorem for additive functionals of reversible markov processes. Comm. Math. Phys. 104 (1986) 1-19. | MR 834478 | Zbl 0588.60058

[9] T. Komorowski, C. Landim and S. Olla. Fluctuations in Markov Processes: Time Symmetry and Martingale Approximation. Grundlehren der Mathematischen Wissenschaften 345. Springer, Berlin, 2012. | MR 2952852 | Zbl pre06028501

[10] C. Landim, S. Sethuraman and S. R. S. Varadhan. Spectral gap for zero range dynamics. Ann. Probab. 24 (1996) 1871-1902. | MR 1415232 | Zbl 0870.60095

[11] T. M. Liggett. Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften 276. Springer, New York, 1985. | MR 776231 | Zbl 0559.60078

[12] B. Morris. Spectral gap for the zero range process with constant rate. Ann. Probab. 34 (2006) 1645-1664. | MR 2271475 | Zbl 1111.60077

[13] Y. Nagahata. Spectral gap for zero-range processes with jump rate g(x)=x γ . Stochastic Process Appl. 120 (2010) 949-958. | MR 2610333 | Zbl 1195.60127

[14] S. C. Port and C. J. Stone. Infinite particle systems. Trans. Amer. Math. Soc. 178 (1973) 307-340. | MR 326868 | Zbl 0283.60057

[15] F. Rezakhanlou. Propagation of chaos for symmetric simple exclusions. Commun. Pure Appl. Math. 47 (1994) 943-957. | MR 1283878 | Zbl 0808.60083

[16] E. Saada. Processus de zero-range avec particule marquée. Ann. Inst. Henri Poincaré Probab. Stat. 26 (1990) 5-17. | Numdam | MR 1075436 | Zbl 0703.60101

[17] S. Sethuraman. On diffusivity of a tagged particle in asymmetric zero-range dynamics. Ann. Inst. Henri Poincaré Probab. Stat. 43 (2007) 215-232. | Numdam | MR 2303120 | Zbl 1112.60084

[18] H. Spohn. Large Scale Dynamics of Interacting Particles. Springer, Berlin, 1991. | Zbl 0742.76002