Berestycki, Julien; Berestycki, Nathanaël; Schweinsberg, Jason
Critical branching brownian motion with absorption: Particle configurations
Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 4 , p. 1215-1250
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consulter l'article sur le site de la revue
MR 3414446
doi : 10.1214/14-AIHP613
URL stable :

Nous considérons un mouvement brownien branchant avec absorption critique, issu d’une particule en x>0, dans lequel les particules se déplacent selon des mouvement browniens réels indépendants avec une dérive critique de -2, et sont absorbées en zero. Nous obtenons des résultats asymptotiques sur le comportement de ce processus avant son extinction, quand la position x de la particule initiale tend vers l’infini. En particulier nous obtenons des éstimées sur le nombre de particules dans le système, la position de la particule la plus à droite, et la configuration des particules à un instant typique.
We consider critical branching Brownian motion with absorption, in which there is initially a single particle at x>0, particles move according to independent one-dimensional Brownian motions with the critical drift of -2, and particles are absorbed when they reach zero. Here we obtain asymptotic results concerning the behavior of the process before the extinction time, as the position x of the initial particle tends to infinity. We estimate the number of particles in the system at a given time and the position of the right-most particle. We also obtain asymptotic results for the configuration of particles at a typical time.


[1] E. Aïdékon, J. Berestycki, E. Brunet and Z. Shi. Branching Brownian motion seen from its tip. Probab. Theory Related Fields 157 (2013) 405–451. MR 3101852 | Zbl 1284.60154

[2] L.-P. Arguin, A. Bovier and N. Kistler. The extremal process of branching Brownian motion. Probab. Theory Related Fields 157 (2013) 535–574. MR 3129797 | Zbl 1286.60045

[3] A. Asselah, P. Ferrari and P. Groisman. Quasi-stationary distributions and Fleming–Viot processes in finite spaces. J. Appl. Probab. 48 (2011) 322–332. MR 2840302 | Zbl 1219.60081

[4] A. Asselah, P. Ferrari, P. Groisman and M. Jonckheere. Fleming–Viot selects the minimal quasi-stationary distribution: The Galton–Watson case. Ann. Inst. Henri Poincaré. To appear, 2015. Available at arXiv:1206.6114.

[5] J. Berestycki, N. Berestycki and J. Schweinsberg. The genealogy of branching Brownian motion with absorption. Ann. Probab. 41 (2013) 527–618. MR 3077519 | Zbl 1304.60088

[6] J. Berestycki, N. Berestycki and J. Schweinsberg. Critical branching Brownian motion with absorption: Survival probability. Probab. Theory Related Fields 160 (2014) 489–520. MR 3278914 | Zbl 06380858

[7] M. Bramson. Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Amer. Math. Soc. 44 (285) (1983) iv+190. MR 705746 | Zbl 0517.60083

[8] E. Brunet, B. Derrida, A. H. Mueller and S. Munier. Noisy traveling waves: Effect of selection on genealogies. Europhys. Lett. 76 (2006) 1–7. MR 2299937

[9] E. Brunet, B. Derrida, A. H. Mueller and S. Munier. Effect of selection on ancestry: An exactly soluble case and its phenomenological generalization. Phys. Rev. E (3) 76 (2007) 041104. MR 2365627

[10] K. Burdzy, R. Holyst, D. Ingerman and P. March. Configurational transition in a Fleming–Viot-type model and probabilistic interpretation of Laplacian eigenfunctions. J. Phys. A: Math. Gen. 29 (1996) 2633–2642. Zbl 0901.60054

[11] K. Burdzy, R. Holyst and P. March. A Fleming–Viot particle representation of the Dirichlet Laplacian. Comm. Math. Phys. 214 (2000) 679–703. MR 1800866 | Zbl 0982.60078

[12] I. Grigorescu and M. Kang. Hydrodynamic limit for a Fleming–Viot type system. Stochastic Process. Appl. 110 (2004) 111–143. MR 2052139 | Zbl 1075.60124

[13] I. Grigorescu and M. Kang. Immortal particle for a catalytic branching process. Probab. Theory Related Fields 153 (2011) 333–361. MR 2925577 | Zbl 1251.60064

[14] F. Hamel, J. Nolen, J.-M. Roquejoffre and L. Ryzhik. A short proof of the logarithmic Bramson correction in Fisher–KPP equations. Netw. Heterog. Media 8 (2013) 275–289. MR 3043938 | Zbl 1275.35067

[15] F. Hamel, J. Nolen, J.-M. Roquejoffre and L. Ryzhik. The logarithmic delay of KPP fronts in a periodic medium. Preprint, arXiv:1211.6173.

[16] J. W. Harris and S. C. Harris. Survival probabilities for branching Brownian motion with absorption. Electron. Commun. Probab. 12 (2007) 81–92. MR 2300218 | Zbl 1132.60059

[17] J. W. Harris, S. C. Harris and A. E. Kyprianou. Further probabilistic analysis of the Fisher–Kolmogorov–Petrovskii–Piscounov equation: One-sided traveling waves. Ann. Inst. Henri Poincaré Probab. Stat. 42 (2006) 125–145. MR 2196975 | Zbl 1093.60059

[18] S. C. Harris and M. I. Roberts. The unscaled paths of branching Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012) 579–608. Numdam | MR 2954267 | Zbl 1259.60102

[19] O. Kallenberg. Foundations of Modern Probability, 2nd edition. Springer, New York, 2002. MR 1876169 | Zbl 0892.60001

[20] H. Kesten. Branching Brownian motion with absorption. Stochastic Process. Appl. 7 (1978) 9–47. MR 494543 | Zbl 0383.60077

[21] S. P. Lalley and Y. Shao. On the maximal displacement of a critical branching random walk. Probab. Theory Related Fields 162 (2015) 71–96. MR 3350041

[22] P. Maillard. Speed and fluctuations of N-particle branching Brownian motion with spatial selection. Preprint, arXiv:1304.0562.

[23] J. Neveu. Multiplicative martingales for spatial branching processes. In Seminar on Stochastic Processes, 1987 223–241. E. Çinlar, K. L. Chung and R. K. Getoor (Eds). Prog. Probab. Statist. 15. Birkhäuser, Boston, 1988. MR 1046418 | Zbl 0652.60089

[24] S. Sawyer. Branching diffusion processes in population genetics. Adv. in Appl. Probab. 8 (1976) 659–689. MR 432250 | Zbl 0365.60081

[25] S. Martinez and J. San Martin. Quasi-stationary distributions for a Brownian motion with drift and associated limit laws. J. Appl. Probab. 31 (4) (1994) 911–920. MR 1303922 | Zbl 0818.60071

[26] A. M. Yaglom. Certain limit theorems of the theory of branching random processes. Doklady Akad. Nauk SSSR (N.S.) 56 (1947) 795–798. MR 22045 | Zbl 0041.45602