@article{AIHPC_1984__1_4_285_0, author = {Girardi, Mario}, title = {Multiple orbits for hamiltonian systems on starshaped surfaces with symmetries}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {285--294}, publisher = {Gauthier-Villars}, volume = {1}, number = {4}, year = {1984}, mrnumber = {778975}, zbl = {0582.70019}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_1984__1_4_285_0/} }
TY - JOUR AU - Girardi, Mario TI - Multiple orbits for hamiltonian systems on starshaped surfaces with symmetries JO - Annales de l'I.H.P. Analyse non linéaire PY - 1984 SP - 285 EP - 294 VL - 1 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPC_1984__1_4_285_0/ LA - en ID - AIHPC_1984__1_4_285_0 ER -
Girardi, Mario. Multiple orbits for hamiltonian systems on starshaped surfaces with symmetries. Annales de l'I.H.P. Analyse non linéaire, Volume 1 (1984) no. 4, pp. 285-294. http://archive.numdam.org/item/AIHPC_1984__1_4_285_0/
[1] On a theorem by Ekeland and Lasry concerning the number of periodic Hamiltonian trajectories, J. Diff. Eq., t. 43, 1981, p. 1-6. | Zbl
, ,[2] Solutions of Minimal Period for a Class of Convex Hamiltonian systems, Math. Annalen, t. 255, 1981, p. 405-421. | MR | Zbl
, ,[3] Dual variational method in critical point theory and applications, J. Functional Analysis, t. 14, 1973, p. 349-381. | MR | Zbl
, ,[4] A geometrical index for the group S1 and some applications to the study of periodic solutions of O. D. E. Comm. Pure Appl. Math., t. 34, 1981, p. 393-432. | MR | Zbl
,[5] On the critical point theory for indefinite functional in the presence of symmetries to appear in Trans. A. M. S. | MR | Zbl
,[6] Sur le nombre des orbites périodique des équations de Hamilton sur une surface étoilée, note aux C. R. A. S., t. A, Paris, to appear. | Zbl
, , , ,[7] Existence of Multiple Periodic Orbits on Star-shaped Hamilton surfaces, preprint. | MR
, , , ,[8] On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface, Ann. Math., t. 112, 1980, p. 283-319. | MR | Zbl
, ,[9] A simple proof for a result of I. Ekeland and J. M. Lasry concerning the number of periodic Hamiltonian trajectories on a prescribed energy surface, to appear on B. U. M. I.
,[10] Periodic orbits near an equilibrium and a theorem by A. Weinstein, Comm. Pure Appl. Math., t. 29, 1976, p. 724-747. | MR | Zbl
,[11] Periodic Solutions of Hamiltonian systems, Comm. Pure Appl. Math., t. 31, 1978, p. 157-184. | MR | Zbl
,[12] On subharmonic solutions of Hamiltonian systems, Comm. Pure Appl. Math., t. 33, 1980, p. 603-633. | MR | Zbl
,[13] Existence of multiple normal mode trajectories on convex energy surfaces of even, classical Hamiltonian system. Preprint.
,[14] Normal mode for nonlinear Hamiltonian systems, Inv. Math., t. 20, 1973, p. 47-57. | Zbl
,