@article{AIHPC_1985__2_3_167_0, author = {Rockafellar, R. T.}, title = {Maximal monotone relations and the second derivatives of nonsmooth functions}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {167--184}, publisher = {Gauthier-Villars}, volume = {2}, number = {3}, year = {1985}, mrnumber = {797269}, zbl = {0581.49009}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_1985__2_3_167_0/} }
TY - JOUR AU - Rockafellar, R. T. TI - Maximal monotone relations and the second derivatives of nonsmooth functions JO - Annales de l'I.H.P. Analyse non linéaire PY - 1985 SP - 167 EP - 184 VL - 2 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPC_1985__2_3_167_0/ LA - en ID - AIHPC_1985__2_3_167_0 ER -
%0 Journal Article %A Rockafellar, R. T. %T Maximal monotone relations and the second derivatives of nonsmooth functions %J Annales de l'I.H.P. Analyse non linéaire %D 1985 %P 167-184 %V 2 %N 3 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPC_1985__2_3_167_0/ %G en %F AIHPC_1985__2_3_167_0
Rockafellar, R. T. Maximal monotone relations and the second derivatives of nonsmooth functions. Annales de l'I.H.P. Analyse non linéaire, Tome 2 (1985) no. 3, pp. 167-184. http://archive.numdam.org/item/AIHPC_1985__2_3_167_0/
[1] The existence almost everywhere of the second differential of a convex function and some associated properties of convex surfaces, Ucenye Zapiski Leningr. Gos. Univ. Ser. Mat., t. 37, 1939, p. 3-35 (in Russian).
,[2] Familles d'opérateurs maximaux monotones et mesurabilité, Annali di Matematica Pura et Applicata, t. 120, 1979, p. 35-111. | MR | Zbl
,[3] A convergence for bivariate functions aimed at the convergence of saddle values, in Mathematical Theory of Optimization (P. Cecconi and T. Zolezzi, eds.), Springer-Verlag Lecture Notes in Math., t. 997, 1983. | MR | Zbl
and ,[4] A convergence theory for saddle functions, Trans. Amer. Math. Soc., t. 226, 1983. | MR | Zbl
and ,[5] Lipschitz behavior of solutions to convex minimization problems, Math. of Op. Research, t. 9, 1984, p. 87-111. | MR | Zbl
,[6] Differential properties of the support function of the ∈-subdifferential of a convex function, Math. Programming, forthcoming. | MR | Zbl
,[7] Stability in mathematical programming with nondifferentiable data, SIAM J. Control Opt., t. 22, 1984, p. 239-254. | MR | Zbl
,[8] Nonsmooth Analysis and Optimization, Wiley-Interscience, 1983. | MR | Zbl
,[9] Generalized gradients and applications, Trans. Amer. Math. Soc., t. 205, 1975, p. 247-262. | MR | Zbl
,[10] On the inverse function theorem, Pacific J. Math., t. 67, 1976, p. 97-102. | MR | Zbl
,[11] Regularity properties of normal and tangent cones, forthcoming. [12] S. DOLECKI, G. SALINETTI and R. J.-B. WETS, Convergence of functions: equi-semicontinuity, Trans. Amer. Math. Soc., t. 276, 1983, p. 409-429. | Zbl
,[13] Approximating a second-order directional derivative for nonsmooth convex functions, SIAM J. Control Opt., t. 20, 1982, p. 783-807. | MR | Zbl
,[14] Calculus rules on the approximate second-order directional derivative of a convex function, SIAM J. Control Opt., t. 22, 1984, p. 381-404. | MR | Zbl
,[15] Sur la différentiabilité de la fonction d'appui du sous-différentiel approaché, C. R. Acad. Sci. Paris, t. 290 Sér. A, 1980, p. 855-858. | Zbl
and ,[16] Contrôle dans les inéquations variationnelles elliptiques, J. Functional Anal., t. 22, 1976, p. 130-185. | MR | Zbl
,[17] Monotone (nonlinear) operations in Hilbert space, Duke Math. J., t. 29, 1962, p. 341-346. | MR | Zbl
,[18] A characterization of tangential regularity, Nonlinear Anal., t. 5, 1981, p. 625-643. | MR | Zbl
,[19] Generalized derivatives and differentiability almost everywhere, Mat. Sbornik, t. 75, 1968, p. 323-334. | MR | Zbl
,[20] Convex Analysis, Princeton University Press, Princeton, NJ, 1970. | MR | Zbl
,[21] Monotone operators associated with saddle functions and minimax problems, in Nonlinear Functional Analysis, Part I (F. E. Browder, ed.), Proc. of Symposia in Pure Math., Amer. Math. Soc., t. 18, 1970, p. 241-250. | MR | Zbl
,[22] Generalized subgradients in mathematical programming, in Mathematical Programming Bonn 1982 : The State of the Art : (A. Bachem et al., eds.), Springer-Verlag, Berlin, 1983, p. 368-380. | MR | Zbl
,[24] Variational systems: An introduction, in Multifunctions and Integrands (G. Salinetti, ed.), Springer-Verlag Lecture Notes in Math. (1984). | MR
and ,[25] Theory of the Integral, second revised edition, Hafner Publishing Co., New York, 1937. | JFM | Zbl
,[26] On the convergence of closed-valued measurable multifunctions, Trans. Amer. Math. Soc., t. 266, 1981, p. 275-289. | MR | Zbl
and ,[27] Convergence of convex function, variational inequalities and convex optimization problems, in Variational Inequalities and Complementarity Problems (R. Cottle, F. Giannessi and J.-L. Lions, eds.), Wiley, 1980, p. 405-419. | MR | Zbl
,