@article{AIHPC_1985__2_3_213_0, author = {Hoff, David and Smoller, Joel}, title = {Solutions in the large for certain nonlinear parabolic systems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {213--235}, publisher = {Gauthier-Villars}, volume = {2}, number = {3}, year = {1985}, mrnumber = {797271}, zbl = {0578.35044}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_1985__2_3_213_0/} }
TY - JOUR AU - Hoff, David AU - Smoller, Joel TI - Solutions in the large for certain nonlinear parabolic systems JO - Annales de l'I.H.P. Analyse non linéaire PY - 1985 SP - 213 EP - 235 VL - 2 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPC_1985__2_3_213_0/ LA - en ID - AIHPC_1985__2_3_213_0 ER -
Hoff, David; Smoller, Joel. Solutions in the large for certain nonlinear parabolic systems. Annales de l'I.H.P. Analyse non linéaire, Tome 2 (1985) no. 3, pp. 213-235. http://archive.numdam.org/item/AIHPC_1985__2_3_213_0/
[1] Local behavior of solutions of quasilinear parabolic equations, Arch. Rat. Mech. Anal., t. 25, 1967, p. 81-122. | MR | Zbl
and ,[2] Positively invariant regions for systems of nonlinear diffusion equations, Ind. U. Math. J., t. 26, 1977, p. 373-392. | MR | Zbl
, and ,[3] Supersonic Flow and Shock Waves, Wiley-Interscience New York, 1948. | MR | Zbl
and ,[4] Invariant regions and finite difference schemes for systems of conservation laws, Trans. Amer. Math. Soc. (to appear). | MR | Zbl
,[5] Error bounds for finite difference approximations for a class of nonlinear parabolic systems, Math. Comp. (to appear). | MR | Zbl
and ,[6] On the Cauchy problem for the system of fundamental equations describing the movement of a compressible fluid, Kodai Math. Sem. Rep., t. 23, 1971, p. 60-120. | MR | Zbl
,[7] On some systems of quasilinear parabolic equations, USSR Comp. Math. and Math. Phys., t. 6, 1966, p. 74-88. | Zbl
',[8] On a model system of equations of one-dimensional gas motion, Diff. Equs., t. 4, 1968, p. 374-380. | Zbl
',[9] The initial-value problems for the equations of a viscous compressible and perfect compressible fluids, RIMS, Kokyunoku 428, Kyoto Univ., Nonlinear Functional Analysis, June 1981, p. 34-59.
and ,[10] Unique global solution in time of initial-boundary-value problems for one dimensional equations of a viscous gas. P. M. M. J. Appl. Math. Mech., t. 41, 1977, p. 273-281. | MR | Zbl
and ,[11] Linear and Quasi-linear Equations of Parabolic Type, Amer. Math. Soc. Translation, Providence, 1968. | Zbl
, and ,[12] Shock waves and entropy, in Contributions to Nonlinear Functional Analysis, ed. by E. Zaratonello, Acad. Press, New York, 1971, p. 603-634. | MR | Zbl
,[13] The initial-value problem for the equations of motion of viscous and heat conductive gases, J. Math. Kyoto Univ., t. 20, 1980, p. 67-104. | MR | Zbl
and ,[14] A class of convergent finite difference schemes for certain nonlinear parabolic systems. Comm. Pure Appl. Math., t. 36, 1983, p. 785-808. | MR | Zbl
and ,[15] Shock Waves and Reaction-Diffusion Equations, Springer Verlag: New York, 1983. | MR | Zbl
,[16] Global solutions for a semilinear parabolic system, Acta. Math. Scientia, t. 3, 1983, p. 397-414. | Zbl
and ,