@article{AIHPC_1986__3_4_331_0, author = {Tomi, Friedrich}, title = {A finiteness result in the free boundary value problem for minimal surfaces}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {331--343}, publisher = {Gauthier-Villars}, volume = {3}, number = {4}, year = {1986}, mrnumber = {853386}, zbl = {0603.49028}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_1986__3_4_331_0/} }
TY - JOUR AU - Tomi, Friedrich TI - A finiteness result in the free boundary value problem for minimal surfaces JO - Annales de l'I.H.P. Analyse non linéaire PY - 1986 SP - 331 EP - 343 VL - 3 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPC_1986__3_4_331_0/ LA - en ID - AIHPC_1986__3_4_331_0 ER -
Tomi, Friedrich. A finiteness result in the free boundary value problem for minimal surfaces. Annales de l'I.H.P. Analyse non linéaire, Tome 3 (1986) no. 4, pp. 331-343. http://archive.numdam.org/item/AIHPC_1986__3_4_331_0/
[1] Topologie. Erster Band., Springer, Berlin, 1935.
, ,[2] Vorlesungen über Differentialgeometrie. I. Elementare Differential geometrie., Springer, Berlin, 1945. | Zbl
,[3] Dirichlet's principle, conformal mapping and minimal surfaces. Interscience Publ., New York, 1950. | MR | Zbl
,[4] Randwertprobleme für Flächen mit vorgeschriebener mittlerer
,Krümmung und Anwendungen auf die Kapillaritätstheorie. II. Freie Ränder. Arch. Rat. Mech. Analysis, t. 39, 1970, p. 275-293. | MR
[5] Ein einfacher Beweis für die Regularität der Lösungen gewisser zweidimensionaler Variationsprobleme unter freien Randbedingungen. Math. Ann., t. 194, 1971, p. 316-331. | MR | Zbl
,[6] Behavior of minimal surfaces with free boundaries. Comm. Pure Appl. Math., t. 23, 1970, p. 803-818. | MR | Zbl
,[7] Topology of three dimensional manifolds and the embedding problems in minimal surface theory. Ann. of Math., t. 112, 1980, p. 441-484. | MR | Zbl
, ,[8] Vorlesungen über Minimalflächen. Springer, Berlin-Heidelberg- New York, 1975. | MR | Zbl
,[9] Threllfall, Lehrbuch der Topologie. Chelsea Publ. Co., New York.
,[10] On the local uniqueness of the problem of least area. Archive Rat. Mech. Analysis, t. 52, 1973, p. 312-318. | MR | Zbl
,