@article{AIHPC_1989__S6__185_0, author = {Clarke, F. H. and Loewen, P. D.}, title = {Variational problems with lipschitzian minimizers}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {185--209}, publisher = {Gauthier-Villars}, volume = {S6}, year = {1989}, mrnumber = {1019114}, zbl = {0677.49006}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_1989__S6__185_0/} }
TY - JOUR AU - Clarke, F. H. AU - Loewen, P. D. TI - Variational problems with lipschitzian minimizers JO - Annales de l'I.H.P. Analyse non linéaire PY - 1989 SP - 185 EP - 209 VL - S6 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPC_1989__S6__185_0/ LA - en ID - AIHPC_1989__S6__185_0 ER -
Clarke, F. H.; Loewen, P. D. Variational problems with lipschitzian minimizers. Annales de l'I.H.P. Analyse non linéaire, Volume S6 (1989), pp. 185-209. http://archive.numdam.org/item/AIHPC_1989__S6__185_0/
[1] Optimization-Theory and Applications. Springer-Verlag, New York, 1983. | MR | Zbl
,[2] The Euler-Lagrange differential inclusion. J. Diff. Equations 19(1975), pp. 80-90. | MR | Zbl
,[3] Optimization and Nonsmooth Analysis. Wiley Interscience, New York, 1983. | MR | Zbl
,[4] Hamiltonian analysis of the generalized problem of Bolza. Trans. AMS 301 (1987), pp. 385-400. | MR | Zbl
,[5] An intermediate existence theory in the calculus of variations. Technical report CRM-1418, C. R. M., Univ. de Montreal, C. P. 6128- A, Montreal, Canada, H3C 3J7.
and ,[6] On the conditions under which the Euler equation or the maximum principle hold. Appl. Math. Optim. 12 (1984), pp. 73-79. | MR | Zbl
and ,[7] Regularity properties of solutions to the basic problem in the calculus of variations. Trans. Amer. Math. Soc. 289 (1985), pp. 73-98. | MR | Zbl
and ,[8] Existence and regularity in the small in the calculus of variations. J. Diff. Equations 59 (1985), pp. 336-354. | MR | Zbl
and ,[9] Sure une méthode directe du calcul des variations. Rend. Circ. Mat. Palermo 39(1915), pp. 233-264; also in Opere Scelte (vol. 2), Cremonese, Rome, 1961. | JFM
,[10] Fondamenti di Calcolo delle Variazioni (2 vols.). Zanichelli, Bologna, 1921, 1923. | JFM
,