On the set-valued calculus in problems of viability and control for dynamic processes : the evolution equation
Annales de l'I.H.P. Analyse non linéaire, Tome S6 (1989), pp. 339-363.
@article{AIHPC_1989__S6__339_0,
     author = {Kurzhanski, A. B. and Filippova, T. F.},
     title = {On the set-valued calculus in problems of viability and control for dynamic processes : the evolution equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {339--363},
     publisher = {Gauthier-Villars},
     volume = {S6},
     year = {1989},
     mrnumber = {1204022},
     zbl = {0693.49007},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPC_1989__S6__339_0/}
}
TY  - JOUR
AU  - Kurzhanski, A. B.
AU  - Filippova, T. F.
TI  - On the set-valued calculus in problems of viability and control for dynamic processes : the evolution equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1989
SP  - 339
EP  - 363
VL  - S6
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPC_1989__S6__339_0/
LA  - en
ID  - AIHPC_1989__S6__339_0
ER  - 
%0 Journal Article
%A Kurzhanski, A. B.
%A Filippova, T. F.
%T On the set-valued calculus in problems of viability and control for dynamic processes : the evolution equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 1989
%P 339-363
%V S6
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPC_1989__S6__339_0/
%G en
%F AIHPC_1989__S6__339_0
Kurzhanski, A. B.; Filippova, T. F. On the set-valued calculus in problems of viability and control for dynamic processes : the evolution equation. Annales de l'I.H.P. Analyse non linéaire, Tome S6 (1989), pp. 339-363. http://archive.numdam.org/item/AIHPC_1989__S6__339_0/

1. Krasovski, N.N., The Control of a Dynamic System, Moscow, "Nauka", 1986 (in Russian). | MR

2. Kurzhanski, A.B., On the analytical description of the set of viable trajectories of a differential system, Dokl. Acad. Nauk SSSR, 1986, 287, 5, pp. 1047-1050 (in Russian). | MR | Zbl

3. Kurzhanski, A.B., Filippova, T.F. On the description of the set of viable trajectories of a differential inclusion, Dokl. Acad. Nauk SSSR, 1986, 289, 1, pp. 38-41 (in Russian). | MR | Zbl

4. Kurzhanski, A.B., Filippova, T.F. On the description of the set of viable trajectories of a control system, Different. Uravn., 1987, No. 8, pp. 1303-1315 (in Russian). | MR | Zbl

5. Aubin, J.-P., Cellina A., Differential inclusions, Heidelberg, Springer-Verlag, 1984. | MR | Zbl

6. Kurzhanski, A.B., Control and observation under uncertainty, Moscow, "Nauka", 1977 (in Russian).

7. Castaing, C., Valadier, M., Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics, vol. 580, Springer-Verlag, 1977. | MR | Zbl

8. Aubin, J.-P., Ekeland I., Applied nonlinear analysis, New York, Academic Press, 1984. | MR | Zbl

9. Panasyuk, A.I., Panasyuk V.I., Asymptotic magistral optimization of control systems, Minsk, "Nauka i Tekhika", 1986 (in Russian). | MR

10. Tolstonogov, A.A., Differential inclusions in Banach space, Novosibirsk, "Nauka", 1986 (in Russian). | Zbl

11. Blagodatskikh, V.I., Filippov A.F., Differential inclusions and optimal control, Trudy Matem. Inst. Akad. Nauk SSSR, 169, Moscow, "Nauka", 1985 (in Russian). | MR | Zbl

12. Demyanov, V.F., Lemaréchal C., Zowe J., Approximation to a set-valued mapping, I: a proposal, Appl. Math. Optim., 1986, 14, 3, p. 203-214. | MR | Zbl

13. Joffe, A.D., Tihomirov, V.M., The theory of extremal problems, Moscow, "Nauka", 1979. | Zbl

14. Kurzhanski, A.B. and Osipov, Yu.S. On optimal control under state constraints. Prikladnaia Matematika i Mehanika (Applied Mathematics and Mechanics) vol. 33, No. 4, 1969.

15. Rockafellar, R.T., State Constraints in Convex Problems of Bolza. SIAM J. Control. vol. 10, No. 4, 1972. | MR | Zbl

16. Demianov, V.F., Minimax: directional differentiation. Leningrad University Press, 1974. | MR