An intrinsic characterization of foldings of euclidean space
Annales de l'I.H.P. Analyse non linéaire, Volume S6 (1989), p. 365-383
@article{AIHPC_1989__S6__365_0,
     author = {Lawrence, J. and Spingarn, J. E.},
     title = {An intrinsic characterization of foldings of euclidean space},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Gauthier-Villars},
     volume = {S6},
     year = {1989},
     pages = {365-383},
     zbl = {0676.51005},
     mrnumber = {1019122},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_1989__S6__365_0}
}
Lawrence, J.; Spingarn, J. E. An intrinsic characterization of foldings of euclidean space. Annales de l'I.H.P. Analyse non linéaire, Volume S6 (1989) pp. 365-383. http://www.numdam.org/item/AIHPC_1989__S6__365_0/

1. Freudenthal, H. and W. Hurewicz, Dehnungen, Verkürzungen, Isometrien, Fundamenta Mathematicae 26 (1936) 121-123. | Zbl 0013.28302

2. Grünbaum, B., Convex Polytopes. John Wiley & Sons, 1967. | Zbl 0163.16603

3. Hilton, P.J. and S. Wylie, Homology Theory. Cambridge U. Press, 1965. | Zbl 0163.17803

4. Hocking, J. and G. Young, Topology. Addison-Wesley, 1961. | Zbl 0135.22701

5. Lawrence, J., and J. Spingarn, On fixed points of nonexpansive piecewise isometric mappings, to appear in Proc. London Math. Soc.. | MR 907234 | Zbl 0605.47052

6. Lawrence, J., and J. Spingarn, On iterates of nonexpansive mappings and foldings, forthcoming.

7. Rockafellar, R.T., Monotone operators and the proximal point algorithm, SIAM J. Control Optimization 14 (1976) 877-898. | MR 410483 | Zbl 0358.90053