Existence of geodesics for the Lorentz metric of a stationary gravitational field
Annales de l'I.H.P. Analyse non linéaire, Volume 7 (1990) no. 1, pp. 27-35.
@article{AIHPC_1990__7_1_27_0,
     author = {Benci, Vieri and Fortunato, Donato},
     title = {Existence of geodesics for the {Lorentz} metric of a stationary gravitational field},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {27--35},
     publisher = {Gauthier-Villars},
     volume = {7},
     number = {1},
     year = {1990},
     mrnumber = {1046082},
     zbl = {0697.58011},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPC_1990__7_1_27_0/}
}
TY  - JOUR
AU  - Benci, Vieri
AU  - Fortunato, Donato
TI  - Existence of geodesics for the Lorentz metric of a stationary gravitational field
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1990
SP  - 27
EP  - 35
VL  - 7
IS  - 1
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPC_1990__7_1_27_0/
LA  - en
ID  - AIHPC_1990__7_1_27_0
ER  - 
%0 Journal Article
%A Benci, Vieri
%A Fortunato, Donato
%T Existence of geodesics for the Lorentz metric of a stationary gravitational field
%J Annales de l'I.H.P. Analyse non linéaire
%D 1990
%P 27-35
%V 7
%N 1
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPC_1990__7_1_27_0/
%G en
%F AIHPC_1990__7_1_27_0
Benci, Vieri; Fortunato, Donato. Existence of geodesics for the Lorentz metric of a stationary gravitational field. Annales de l'I.H.P. Analyse non linéaire, Volume 7 (1990) no. 1, pp. 27-35. http://archive.numdam.org/item/AIHPC_1990__7_1_27_0/

[1] A. Avez, Essais de géométrie riemannienne hyperbolique globale. Application à la Relativité Générale, Ann. Inst. Fourier, Vol. 132, 1963, pp. 105-190. | Numdam | MR | Zbl

[2] P. Bartolo, V. Benci and D. Fortunato, Abstract Critical Point Theorems and Applications to Some Nonlinear Problems with "Strong Resonance" at Infinity, Journal of nonlinear Anal. T.M.A., Vol. 7, 1983, pp.981-1012. | MR | Zbl

[3] S.W. Hawking and G.F.R. Ellis, The Large scale Structure of Space-Time, Cambridge University Press, 1973. | MR | Zbl

[4] L. Landau and E. Lifchitz, Théorie des champs, Mir, 1970.

[5] R. Penrose, Techniques of Differential Topology in Relativity, Conference board of Math. Sc., Vol. 7, S.I.A.M., 1972. | MR | Zbl

[6] P.H. Rabinowitz, Some Mini-Max Theorems and Applications to Nonlinear Partial Differential Equations, Nonlinear Analysis, CESARI, KANNAN, WEINBERGER Ed., Academic Press, 1978, pp. 161-177. | MR | Zbl

[7] P.H. Rabinowitz, Mini-Max Methods in Critical Point Theory with Applications to Differential Equations, Conf. board Math. Sc. A.M.S., Vol. 65, 1986. | Zbl

[8] H.J. Seifert, Global Connectivity by Time Like Geodesic, Zs. f. Naturfor., Vol. 22 a, 1967, pp. 1256-1360. | MR | Zbl