A characterization of maps in H 1 (B 3 ,S 2 ) which can be approximated by smooth maps
Annales de l'I.H.P. Analyse non linéaire, Tome 7 (1990) no. 4, pp. 269-286.
@article{AIHPC_1990__7_4_269_0,
     author = {Bethuel, F.},
     title = {A characterization of maps in $H^1 (B^3, S^2)$ which can be approximated by smooth maps},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {269--286},
     publisher = {Gauthier-Villars},
     volume = {7},
     number = {4},
     year = {1990},
     mrnumber = {1067776},
     zbl = {0708.58004},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPC_1990__7_4_269_0/}
}
TY  - JOUR
AU  - Bethuel, F.
TI  - A characterization of maps in $H^1 (B^3, S^2)$ which can be approximated by smooth maps
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1990
SP  - 269
EP  - 286
VL  - 7
IS  - 4
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPC_1990__7_4_269_0/
LA  - en
ID  - AIHPC_1990__7_4_269_0
ER  - 
%0 Journal Article
%A Bethuel, F.
%T A characterization of maps in $H^1 (B^3, S^2)$ which can be approximated by smooth maps
%J Annales de l'I.H.P. Analyse non linéaire
%D 1990
%P 269-286
%V 7
%N 4
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPC_1990__7_4_269_0/
%G en
%F AIHPC_1990__7_4_269_0
Bethuel, F. A characterization of maps in $H^1 (B^3, S^2)$ which can be approximated by smooth maps. Annales de l'I.H.P. Analyse non linéaire, Tome 7 (1990) no. 4, pp. 269-286. http://archive.numdam.org/item/AIHPC_1990__7_4_269_0/

[B] H. Brezis, private communication.

[BCL] H. Brezis, J.M. Coron and E.H. Lieb, Harmonic maps with defects.Comm. Math. Phys., t. 107, 1986, p. 649-705. | MR | Zbl

[Bel] F. Bethuel, The approximation problem for Sobolev maps between two manifolds, to appear. | MR | Zbl

[BZ] F. Bethuel and X. Zheng, Density of smooth functions between two manifolds in Sobolev spaces. J. Func. Anal., t. 80, 1988, p. 60-75. | MR | Zbl

[CG] J.M. Coron and R. Gulliver, Minimizing p-harmonic maps into spheres, preprint. | MR

[H] F. Helein, Approximations of Sobolev maps between an open set and an euclidean sphere, boundary data, and singularities, preprint. | MR

[SU] R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps. J. Diff. Geom., t. 17, 1982, p. 307-335. | MR | Zbl

[W] B. White, Infima of energy functionals in homotopy classes. J. Diff. Geom, t. 23, 1986, p. 127-142. | MR | Zbl