Closed orbits of fixed energy for a class of N-body problems
Annales de l'I.H.P. Analyse non linéaire, Volume 9 (1992) no. 2, pp. 187-200.
@article{AIHPC_1992__9_2_187_0,
     author = {Ambrosetti, A. and Coti-Zelati, V.},
     title = {Closed orbits of fixed energy for a class of {N-body} problems},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {187--200},
     publisher = {Gauthier-Villars},
     volume = {9},
     number = {2},
     year = {1992},
     zbl = {0757.70007},
     mrnumber = {1160848},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPC_1992__9_2_187_0/}
}
TY  - JOUR
AU  - Ambrosetti, A.
AU  - Coti-Zelati, V.
TI  - Closed orbits of fixed energy for a class of N-body problems
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1992
DA  - 1992///
SP  - 187
EP  - 200
VL  - 9
IS  - 2
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPC_1992__9_2_187_0/
UR  - https://zbmath.org/?q=an%3A0757.70007
UR  - https://www.ams.org/mathscinet-getitem?mr=1160848
LA  - en
ID  - AIHPC_1992__9_2_187_0
ER  - 
%0 Journal Article
%A Ambrosetti, A.
%A Coti-Zelati, V.
%T Closed orbits of fixed energy for a class of N-body problems
%J Annales de l'I.H.P. Analyse non linéaire
%D 1992
%P 187-200
%V 9
%N 2
%I Gauthier-Villars
%G en
%F AIHPC_1992__9_2_187_0
Ambrosetti, A.; Coti-Zelati, V. Closed orbits of fixed energy for a class of N-body problems. Annales de l'I.H.P. Analyse non linéaire, Volume 9 (1992) no. 2, pp. 187-200. http://archive.numdam.org/item/AIHPC_1992__9_2_187_0/

[1] A. Ambrosetti and V. Coti Zelati, Closed Orbits of Fixed Energy for Singular Hamiltonian Systems, Archive Rat. Mech. Analysis, Vol. 112, 1990, pp. 339-362. | MR | Zbl

[2] A. Ambrosetti and P.H. Rabinowitz, Dual Variational Methods in Critical Point Theory and Applications, J. Funct. Analysis, Vol. 14, 1973, pp. 349-381. | MR | Zbl

[3] A. Bahri and P.H. Rabinowitz, Solutions of the Three-Body Problem via Critical Points at Infinity, preprint.

[4] U. Bessi and V. Coti ZELATI, Symmetries and Non-Collision Closed Orbits for Planar N-Body Type Problems, J. Nonlin. Analysis TMA (to appear). | Zbl

[5] V. Coti Zelati, Periodic Solutions for N-Body Type Problems, Ann. Inst. H. Poincaré Anal. Nonlinéaire, Vol. 7-5, 1990, pp. 477-492. | Numdam | MR | Zbl