Multiple solutions of a semilinear elliptic equation in N
Annales de l'I.H.P. Analyse non linéaire, Volume 10 (1993) no. 6, p. 593-604
@article{AIHPC_1993__10_6_593_0,
     author = {Cao, Dao-Min},
     title = {Multiple solutions of a semilinear elliptic equation in $\mathbb {R}^N$},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Gauthier-Villars},
     volume = {10},
     number = {6},
     year = {1993},
     pages = {593-604},
     zbl = {0797.35039},
     mrnumber = {1253603},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_1993__10_6_593_0}
}
Cao, Dao-Min. Multiple solutions of a semilinear elliptic equation in $\mathbb {R}^N$. Annales de l'I.H.P. Analyse non linéaire, Volume 10 (1993) no. 6, pp. 593-604. http://www.numdam.org/item/AIHPC_1993__10_6_593_0/

[1] A. Ambrosetti and P. Rabinowitz, Dual Variational Methods in Critical Point Theory and Applications, J. Funct. Anal., Vol. 14, 1973, pp. 327-381. | Zbl 0273.49063

[2] A. Bahri and P.L. Lions, On the Existence of a Positive Solution of Semilinear Elliptic Equations in Unbounded Domains, preprint. | Zbl 0883.35045

[3] V. Benci and G. Cerami, Positive Solutions of Semilinear Elliptic Problems in Exterior Domains, Arch. Rat. Mech. Anal., Vol. 99, 1987. pp. 283-300. | Zbl 0635.35036

[4] H. Berestycki and P.L. Lions, Nonlinear Scalar Field Equations, I and II, Arch. Rat. Mech. Anal., Vol. 82, 1983, pp. 313-376. | Zbl 0533.35029

[5] W.Y. Ding and W.M. Ni, On the Existence of Positive Entire Solutions of a Semilinear Elliptic Equation, Arch. Rat. Mech. Anal., Vol. 91, 1986, pp. 288-308. | Zbl 0616.35029

[6] I. Ekeland, Nonconvex Minimization Problems, Bull. Amer. Math. Soc., Vol. 1, 1979, pp. 443-474. | Zbl 0441.49011

[7] B. Gidas, W.M. Ni and L. Nirenberg, Symmetry of Positive Solutions of Nonlinear Elliptic Equations in Rn, Advances in Math., Supplementary Studies, Vol. 7, 1981, pp. 369-402. | Zbl 0469.35052

[8] Y.Y. Li, On Second Order Nonlinear Elliptic Equations, Dissertation, New York Univ., 1988.

[9] P.L. Lions, The Concentration-Compactness Principle in the Calculus of Variations. The Locally Compact Case, I and II, Vol. 1, 1984, pp. 109-145 and 223-283. | Numdam | Zbl 0704.49004 | Zbl 0541.49009

[10] P.L. Lions, On Positive Solution of Semilinear Elliptic Equation in Unbounded Domains, In Nonlinear Diffusion Equations and Their Equilibrium States, Springer, New York, 1988.

[11] M.K. Kwong, Uniqueness of Positive Solution of Δu-u+up=0, Arch. Rat. Mech. Anal., Vol. 105, 1977, pp. 169-

[12] W. Strauss, Existence of Solitary Waves in Higher Dimensions, Comm. Math. Phys., Vol. 55, 1977, pp. 109-162. [13] X.P. Zhu, Multiplie Entire Solutions of Semilinear Elliptic Equations, Nonlinear Anal., Vol. 12, 1988, pp. 1297-1316. | Zbl 0356.35028