Vortices for a variational problem related to superconductivity
Annales de l'I.H.P. Analyse non linéaire, Volume 12 (1995) no. 3, p. 243-303
@article{AIHPC_1995__12_3_243_0,
     author = {B\'ethuel, Fabrice and Rivi\`ere, Tristan},
     title = {Vortices for a variational problem related to superconductivity},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Gauthier-Villars},
     volume = {12},
     number = {3},
     year = {1995},
     pages = {243-303},
     zbl = {0842.35119},
     mrnumber = {1340265},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_1995__12_3_243_0}
}
Bethuel, Fabrice; Rivière, Tristan. Vortices for a variational problem related to superconductivity. Annales de l'I.H.P. Analyse non linéaire, Volume 12 (1995) no. 3, pp. 243-303. http://www.numdam.org/item/AIHPC_1995__12_3_243_0/

[1] F. Bethuel, H. Brezis and F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional, Calculus of Variations, Vol. I, 1993, pp. 123-148. | MR 1261720 | Zbl 0834.35014

[2] F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices, Birkhäuser, 1993. | MR 1269538 | Zbl 0802.35142

[3] F. Bethuel, H. Brezis and F. Hélein, Limite singulière pour la minimisation de fonctionnelles du type Ginzburg-Landau, C. R. Acad. Sci. Paris, Vol. 314, 1992, pp. 891-895. | MR 1168319 | Zbl 0773.49003

[4] F. Bethuel, H. Brezis and F. Hélein, Tourbillons de Ginzburg-Landau et énergies renormalisées, to appear inC. R. Acad. Sci. Paris, 1993. | MR 1231415 | Zbl 0783.35014

[5] H. Brezis, F. Merle and T. Rivière, Quantization effects for -Δu = u (1 - |u|2) in R2, to appear in , Arch. for ratio. Mech.1993. | MR 1228965 | Zbl 0809.35019

[6] H. Brezis, F. Merle and T. Rivière, Quantifications pour les solutions de -Δu = u(1 - |u|2) dans R2, to appear in C..R. .Acad. Sci. Paris, 1993. | MR 1228965

[7] A. Boutet De Monvel-Berthier, V. Georgescu and R. Purice, Sur un problème aux limites de la théorie de Ginzburg-Landau, C. R. Acad. Sci. Paris, Vol. 307, 1988, pp. 55-58. | MR 954091 | Zbl 0696.35058

[8] A. Comtet and G.W. Gibbons, Bogomol'nyi bounds for cosmic strings, Nucl. Phys. B, Vol. 299, 1988, pp. 719-733. | MR 936758

[9] Q. Du, M. Gunzburger and J. Peterson, Analysis and approximation of the Ginzburg-Landau model of superconductivity, SIAM Review, Vol. 34, 1992, pp. 45-81. | MR 1156289 | Zbl 0787.65091

[10] P. Grisvard, Elliptic Problems in non-smooth domains, Pitman, Marshfields, Mass, 1985. | Zbl 0695.35060

[11] A. Jaffe and C. Taubes, Vortices and Monopoles, Birkhäuser, 1980. | MR 614447 | Zbl 0457.53034

[12] D. Saint-James, G. Sarma and E.J. Thomas, Type II Superconductivity, Pergamon Press, 1969.

[13] J. Spruck and Y. Yang, Cosmic string solutions of the Einstein Matter gauge equations, to appear1993.

[14] J. Spruck and Y. Yang, On multivortices in the electroweak theory II: existence of Bogomol'nyi solutions in R2, Comm. Math. Phys., Vol. 144, 1992, pp. 215-234. | MR 1152370 | Zbl 0748.53060

[15] G. Stampacchia, Equations elliptiques du second ordre à coefficients discontinus, Presses Univ. de Montreal, 1966. | MR 251373 | Zbl 0151.15501

[16] Y. Yang, Boundary value problems of the Ginzburg-Landau equations, Proc. Roy. Soc. Edinburgh, Vol. 114 A, 1990, pp. 355-365. | MR 1055553 | Zbl 0708.35074