@article{AIHPC_1995__12_3_305_0, author = {Carbou, Gilles}, title = {Unicit\'e et minimalit\'e des solutions d'une \'equation de {Ginzburg-Landau}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {305--318}, publisher = {Gauthier-Villars}, volume = {12}, number = {3}, year = {1995}, mrnumber = {1340266}, zbl = {0835.35045}, language = {fr}, url = {http://archive.numdam.org/item/AIHPC_1995__12_3_305_0/} }
TY - JOUR AU - Carbou, Gilles TI - Unicité et minimalité des solutions d'une équation de Ginzburg-Landau JO - Annales de l'I.H.P. Analyse non linéaire PY - 1995 SP - 305 EP - 318 VL - 12 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPC_1995__12_3_305_0/ LA - fr ID - AIHPC_1995__12_3_305_0 ER -
Carbou, Gilles. Unicité et minimalité des solutions d'une équation de Ginzburg-Landau. Annales de l'I.H.P. Analyse non linéaire, Tome 12 (1995) no. 3, pp. 305-318. http://archive.numdam.org/item/AIHPC_1995__12_3_305_0/
[1] Ginzburg-Landau Vortices, Birkhaüser, 1994. | MR | Zbl
, and ,[2] Analyse Fonctionnelle, Masson, 1987. | MR | Zbl
,[3] Quantization effects for -Δu = u(1 - |u|2) in R2 , à paraître dansArch. Rat. Mech. Anal. | Zbl
, and ,[4] Geometric measure theory, New York, Springer, 1969. | MR | Zbl
,[5] Topological Defects in Cosmology, Private Communication.
,[6] The gradient theory of phase transitions and the minimal interface criterion, Arch. Rat. Mech. Anal., Vol. 98, 1987, pp. 123-142. | MR | Zbl
,